JSaS ‘ SAS Publishing

SAS 9.1 Macro Language

Reference

The Power to Know,

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS® 9.1 Macro Language: Reference. Cary, NC: SAS Institute Inc.

SAS® 9.1 Macro Language: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-212-8

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New

Overview

New Automatic Macro Variable

New Comparison Operators

New SAS System Options |viii

New Macro Statements

New Macro Functions

New Option for the %MACRO Statement

PART I Understanding and Using the Macro Facility |i|

Chapter 1 A Introduction to the Macro Facility
Getting Started with the Macro Facility
Replacing Text Strings Using Macro Variables [
Generating SAS Code Using Macros [5]

More Advanced Macro Techniques

Other Features of the Macro Language

Chapter 2 A SAS Programs and Macro Processing |ﬁ|
Introduction to SAS Programs and Macro Processing
How SAS Processes Statements without Macro Activity
How SAS Processes Statements with Macro Activity

Chapter 3 A Macro Variables

Introduction to Macro Variables

Macro Variables Defined by SAS

Macro Variables Defined by Users [22]

Using Macro Variables [25]

Displaying Macro Variable Values

Referencing Macro Variables Indirectly

Manipulating Macro Variable Values with Macro Functions

Chapter 4 A Macro Processing [33]

Introduction to Macro Processing [33]

Defining and Calling Macros [33]

How the Macro Processor Compiles a Macro Definition
How the Macro Processor Executes a Compiled Macro
Summary of Macro Processing

Chapter 5 A Scopes of Macro Variables
Introduction to the Scopes of Macro Variables
Global Macro Variables

Local Macro Variables

Writing the Contents of Symbol Tables to the SAS Log
How Macro Variables Are Assigned and Resolved
Examples of Macro Variable Scopes

Chapter 6 A Macro Expressions

Introduction to Macro Expressions

Defining Arithmetic and Logical Expressions

How the Macro Processor Evaluates Arithmetic Expressions

How the Macro Processor Evaluates Logical Expressions

Chapter 7 A Macro Quoting

Introduction to Macro Quoting

Deciding When to Use a Macro Quoting Function and Which Function to Use
Using the %STR and %NRSTR Functions

Using the %2BQUOTE and %NRBQUOTE Functions

Referring to Already Quoted Variables

Deciding How Much Text to Mask with a Macro Quoting Function
Using %SUPERQ

Summary of Macro Quoting Functions and the Characters They Mask
Unquoting Text

How Macro Quoting Works

Other Functions That Perform Macro Quoting

Chapter 8 A Interfaces with the Macro Facility

Introduction to Interfaces with the Macro Facility

DATA Step Interfaces

Using SAS Language Functions in the DATA Step and Macro Facility
Interfaces with the SQL Procedure [100

Interfaces with the SAS Component Language [101

SAS/CONNECT Interfaces [103

Chapter 9 A Storing and Reusing Macros

Introduction to Storing and Reusing Macros [105

Saving Macros in an Autocall Library

Saving Macros Using the Stored Compiled Macro Facility

Chapter 10 A Macro Facility Error Messages and Debugging @
General Macro Debugging Information |111

Troubleshooting Your Macros |113

Debugging Techniques |[126

Chapter 11 A Writing Efficient and Portable Macros @
Introduction to Writing Efficient and Portable Macros [133
Keeping Efficiency in Perspective |133

Writing Efficient Macros [134

Writing Portable Macros 140

Chapter 12 A Macro Language Elements (147
Introduction to Macro Language Elements |[147

Macro Statements (147

Macro Functions [149

Automatic Macro Variables [154

Interfaces with the Macro Facility |156

Selected Autocall Macros Provided with SAS Software |157
Selected System Options Used in the Macro Facility [158

PARTZ Macro Language Dictionary |161

Chapter 13 A Macro Language Dictionary

PARTS Appendixes [315

Appendix 1 A Reserved Words in the Macro Facility
Macro Facility Word Rules (317
Reserved Words [317

Appendix 2 A SAS Tokens
What Are SAS Tokens? (319
List of Tokens |319

Appendix 3 A Syntax for Selected Functions Used with the %SYSFUNC Function @

Summary Descriptions and Syntax (321

Appendix 4 A Recommended Reading [325]
Recommended Reading [325]

Glossary
Index [333]

Vi

vii

What’s New

Overview

There are several enhancements to the Macro Language Facility including a new
automatic macro variable, new comparison operators, new SAS system options, new
macro statements, new functions, and a new option for the %2MACRO statement.

Note:

0 This section describes the features of the SAS Macro Facility that are new or
enhanced since SAS 8.2.

o z/OS is the successor to the OS/390 operating system. SAS 9.1 is supported on
both 0S/390 and z/OS operating systems and, throughout this document, any
reference to z/OS also applies to OS/390, unless otherwise stated.

New Automatic Macro Variable

o0 To take advantage of the new parallel-processing abilities in SAS, the new
read-only automatic macro variable, &SYSNCPU, contains the current number of
CPUs that SAS can use during the current SAS session. See “SYSNCPU
Automatic Macro Variable” on page 286.

New Comparison Operators

0 The IN mnemonic operator is a binary comparison operator similar to that of the
DATA step, except that the operand on the right side is simply a list of values and
is not enclosed in parentheses. The IN operator compares the value of the operand
on the left side against the list of values in the operand on the right side. See
Chapter 6, “Macro Expressions,” on page 67.

0 You can use the # character as an alternate spelling for the IN operator.

viii What’s New

New SAS System Options

These are the new macro system options:

0 The MPRINTNEST system option enables the macro nesting information to be
displayed in the MPRINT output in the SAS log. See “MPRINTNEST System
Option” on page 219.

0 The MLOGICNEST system option enables the macro nesting information to be
displayed in the MLOGIC output in the SAS log. See “MLOGICNEST System
Option” on page 215.

o The MINDELIMITER system option specifies the character to be used as the
delimiter within a list of values for the macro IN operator. See “MINDELIMITER=
System Option” on page 212.

0 The MCOMPILENOTE system option specifies that a NOTE be issued to the SAS
log when the compilation of a macro is completed. See “MCOMPILENOTE System
Option” on page 208.

0 The MAUTOLOCDISPLAY system option specifies that the source location of the
autocall macro be displayed in the SAS log when the autocall macro is invoked.
See “MAUTOLOCDISPLAY System Option” on page 207.

New Macro Statements

0 The %ABORT statement stops the macro that is executing along with the current
DATA step, SAS job, or SAS session. See “ABORT Statement” on page 163.

o The %RETURN statement execution causes normal termination of the currently
executing macro. See “%PRETURN Statement” on page 234.

o The %COPY statement copies specified items from a SAS macro library. See
“%COPY Statement” on page 172.

New Macro Functions

0 The %SYMEXIST function returns an indication of the existence of a macro
variable. See “NSYMEXIST Function” on page 248.

0 The %SYMGLOBL function returns an indication as to whether a macro variable
is global in scope. See “SYMGLOBL Function” on page 254.

0 The %SYMLOCAL function returns an indication as to whether a macro variable
is local in scope. See “%SYMLOCAL Function” on page 256.

New Option for the %MACRO Statement

o SOURCE is a new option that is issued in the %#MACRO statement. When used
with the existing STORE option, the SOURCE option combines and stores the
source of the compiled macro with the compiled macro code as an entry in a SAS
catalog in a permanent SAS data library. See “%MACRO Statement” on page 202.

PART

Understanding and Using the Macro Facility

Chapter I........ .. Introduction to the Macro Facility 3
Chapter2.......... SAS Programs and Macro Processing 17
Chapter 3.......... Macro Variables 19

Chapter 4. Macro Processing 33

Chapter &........ .. Scopes of Macro Variables 41

Chapter 6. Macro Expressions 67

Chapter 7.......... Macro Quoting 75

Chapter 8. Interfaces with the Macro Facility 95
Chapter 9. Storing and Reusing Macros 105

Chapter 10. Macro Facility Error Messages and Debugging 111
Chapter 11. Writing Efficient and Portable Macros 133

Chapter 12. Macro Language Elements 7147

CHAPTER

Introduction to the Macro
Facility

Getting Started with the Macro Facility 3
Replacing Text Strings Using Macro Variables 4
Generating SAS Code Using Macros 5
Inserting Comments in Macros 6
Macro Definition Containing Several SAS Statements 6
Passing Information into a Macro Using Parameters 1
Conditionally Generating SAS Code 8
More Advanced Macro Techniques 8
Generating Repetitive Pieces of Text Using %DO Loops 9
Generating a Suffix for a Macro Variable Reference 9
Other Features of the Macro Language 10

Getting Started with the Macro Facility

This is the macro facility language reference for SAS. It is a reference for the SAS
macro language processor and defines the SAS macro language elements. This section
introduces the SAS macro facility using simple examples and explanation.

The macro facility is a tool for extending and customizing SAS and for reducing the
amount of text you must enter to do common tasks. The macro facility enables you to
assign a name to character strings or groups of SAS programming statements. From
that point on, you can work with the names rather than with the text itself.

When you use a macro facility name in a SAS program or from a command prompt,
the macro facility generates SAS statements and commands as needed. The rest of SAS
receives those statements and uses them in the same way it uses the ones you enter in
the standard manner.

The macro facility has two components:

the macro is the portion of SAS that does the work.

processor

the macro is the syntax that you use to communicate with the macro processor.
language

When SAS compiles program text, two delimiters trigger macro processor activity:

&name refers to a macro variable. “Replacing Text Strings Using Macro
Variables” on page 4 explains how to create a macro variable. The
form &name is called a macro variable reference.

Yoname refers to a macro. “Generating SAS Code Using Macros” on page 5
explains how to create a macro. The form %name is called a macro
call.

4

Replacing Text Strings Using Macro Variables A Chapter 1

The text substitution produced by the macro processor is completed before the
program text is compiled and executed. The macro facility uses statements and
functions that resemble those that you use in the DATA step. An important difference,
however, is that macro language elements can only trigger text substitution and are not
present during program or command execution.

Note: Three SAS statements begin with a % that are not part of the macro facility.
These elements are the ZINCLUDE, %LIST, and %RUN statements. These statements
are documented in your Base SAS documentation. A

The following graphic explains the syntax used in this document:

Syntax Conventions

PROC DATASETS <LIBRARY =libref> <MEMTY PE=(mtype-list)>
<DETAILS | NODETAILS> <other-options>;

RENAME variable-1=new-name-1 <. .. variable-n new-naine-n>;

SAS keywords, such as statement or procedure names, appear in Mutually exclusive choices are joined with a vertical bar(]).
bold type. Values that you must supply appear in italic type.

Values that you must spell as they are given in the syntax appear in Argument groups that you can repeat are indicated by an
uppercase type. ellipsis (. . .).

Optional arguments appear inside angle brackets(<>).

Replacing Text Strings Using Macro Variables

Macro variables are an efficient way of replacing text strings in SAS code. The
simplest way to define a macro variable is to use the %LET statement to assign the
macro variable a name (subject to standard SAS naming conventions), and a value.
Here is a simple example:

$let city=New Orleans;

Now you can use the macro variable CITY in SAS statements where you’d like the
text New Orleans to appear. You refer to the variable by preceding the variable name
with an ampersand (&), as in the following TITLE statement:

title "Data for &city";

The macro processor resolves the reference to the macro variable CITY, and the
statement becomes

title "Data for New Orleans";

A macro variable can be defined within a macro definition or within a statement that
is outside a macro definition (called open code).

Note: The title is enclosed in double quotation marks. In quoted strings in open
code, the macro processor resolves macro variable references within double quotation
marks but not within single quotation marks. A

A %LET statement in open code (outside a macro definition) creates a global macro
variable that is available for use anywhere in your SAS code during the SAS session in
which the variable was created. There are also local macro variables, which are
available for use only inside the macro definition where they are created. See Chapter

Introduction to the Macro Facility /A Generating SAS Code Using Macros 5

5, “Scopes of Macro Variables,” on page 41 for more information on global and local
macro variables.

Macro variables are not subject to the same length limits as SAS data set variables.
However, if the value you want to assign to a macro variable contains certain special
characters (for example, semicolons, quotation marks, ampersands, and percent signs)
or mnemonics (for example, AND, OR, or LT), you must use a macro quoting function to
mask the special characters. Otherwise, the special character or mnemonic might be
misinterpreted by the macro processor. See Chapter 7, “Macro Quoting,” on page 75 for
more information on macro quoting.

While macro variables are useful for simple text substitution, they cannot perform
conditional operations, DO loops, and other more complex tasks. For this kind of work,
you must define a macro.

Generating SAS Code Using Macros

Macros enable you to substitute text in a program and to do many other things. A
SAS program can contain any number of macros, and you can invoke a macro any
number of times in a single program.

To help you learn how to define your own macros, this section presents a few
examples you can model your own macros after. Each of these examples is fairly simple;
by mixing and matching the various techniques, you can create advanced, flexible
macros that are capable of performing complex tasks.

Each macro you define has a distinct name, which is subject to the standard SAS
naming conventions. (See the Base SAS language documentation for more information
on SAS naming conventions.) A macro definition is placed between a %MACRO
statement and a %MEND (macro end) statement, as follows:

%9MACRO macro-name;
macro definition

%MEND macro-name;

The macro-name specified in the 2MEND statement must match the macro-name
specified in the %MACRO statement.

Note: While specifying the macro-name in the %2MEND statement is not required, it
is recommended. It makes matching %MACRO and %MEND statements while
debugging easier. A

Here is a simple macro definition:

gmacro dsn;
Newdata
gmend dsn;

This macro is named DSN. Newdata is the text of the macro. A string inside a macro
is called constant text or model text because it is the model, or pattern, for the text that
becomes part of your SAS program.

To call (or invoke) a macro, precede the name of the macro with a percent sign (%), as
follows:

Jomacro-name

Although the call to the macro looks somewhat like a SAS statement, it does not
have to end in a semicolon.

Inserting Comments in Macros A Chapter 1

For example, here is how you might call the DSN macro:
title "Display of Data Set %dsn";

The macro processor executes the macro DSN, which substitutes the constant text in
the macro into the TITLE statement. Thus, the TITLE statement becomes

title "Display of Data Set Newdata";

Note: The title is enclosed in double quotation marks. In quoted strings in open
code, the macro processor resolves macro invocations within double quotation marks
but not within single quotation marks. A

The macro DSN is exactly the same as coding the following:

%let dsn=Newdata;

title "Display of Data Set &dsn";
The result is still
title "Display of Data Set Newdata";

So, in this case, the macro approach does not have any advantages over the macro
variable approach. However, DSN is an extremely simple macro. As you will see in
later examples, macros can do much more than the macro DSN does.

Inserting Comments in Macros

All code benefits from thorough commenting, and macro code is no exception. There
are two forms you can use to add comments to your macro code.

The first form is the same as comments in SAS code, beginning with /* and ending
with */. The second form begins with a $* and ends with a ;. Here is a program that
uses both types of comments:

gmacro comment;
/* Here is the type of comment used in other SAS code. */
$let myvar=abc;

$* Here is a macro-type comment.;
%let myvar2=xyz;

gmend comment;

You can use whichever type comment you prefer in your macro code, or use both
types as in the previous example.

The asterisk-style comment (* commentary ; Jused in SAS code is not recommended
within a macro definition. While the asterisk-style will comment constant text
appropriately, it will execute any macro statements contained within the comment.

Macro Definition Containing Several SAS Statements
You can create macros that contain entire sections of a SAS program:
gmacro plot;
proc plot;

plot income*age;
run;

Introduction to the Macro Facility A Inserting Comments in Macros 7

gmend plot;
Later in the program you can invoke the macro as follows:

data temp;
set in.permdata;
if age>=20;

run;

$plot

proc print;
run;

Executing these statements produces the following program:

data temp;
set in.permdata;
if age>=20;

run;

proc plot;
plot income*age;
run;

proc print;

Passing Information into a Macro Using Parameters

A macro variable defined in parentheses in a %MACRO statement is a macro
parameter. Macro parameters enable you to pass information into a macro. Here is a
simple example:

gmacro plot(yvar= ,xvar=);
proc plot;
plot &yvar*&xvar;
run;
gmend plot;

You invoke the macro by providing values for the parameters, as follows:

$plot (yvar=income, xvar=age)

$plot (yvar=income,xvar=yrs_educ)

When the macro executes, the macro processor matches the values specified in the
macro call to the parameters in the macro definition. (This type of parameter is called a
keyword parameter.)

Macro execution produces the following code:

proc plot;
plot income*age;

run;

proc plot;
plot income*yrs_educ;
run;

8

More Advanced Macro Techniques A Chapter 1

Using parameters has several advantages. First, you can write fewer %2LET
statements. Second, using parameters ensures that the variables never interfere with
parts of your program outside the macro. Macro parameters are an example of local
macro variables, which exist only during the execution of the macro in which they are
defined.

Conditionally Generating SAS Code

By using the %IF-%THEN-%ELSE macro statements, you can conditionally generate
SAS code with a macro. Here is an example:

g$macro whatstep(info=,mydata=);
$if &info=print %then
%do;
proc print data=&mydata;
run;
%end;

%else %if &info=report %then
%do;
options nodate nonumber ps=18 1ls=70 fmtsearch=(sasuser);
proc report data=&mydata nowd;
column manager dept sales;
where sector='se’;
format manager $mgrfmt. dept $deptfmt. sales dollarll.2;
title ’'Sales for the Southeast Sector’;
run;
gend;
$mend whatstep;

In this example, the macro WHATSTEP uses keyword parameters, which are set to
default null values. When you call a macro that uses keyword parameters, specify the
parameter name followed by an equal sign and the value you want to assign the
parameter. Here, the macro WHATSTEP is called with INFO set to print and
MYDATA set to grocery:

$whatstep(info=print,mydata=grocery)
This produces the following statements:

proc print data=grocery;

run;

Because values in the macro processor are case sensitive, the previous program does
not work if you specify PRINT instead of print. To make your macro more robust, use
the %UPCASE macro function. For more information on this function, refer to Chapter
13, “Macro Language Dictionary,” on page 163.

For more information on macro definitions and macro parameters, see %MACRO and
%MEND in Chapter 13, “Macro Language Dictionary,” on page 163.

More Advanced Macro Techniques

After mastering the basic techniques previously discussed, you might want to learn
some more advanced macro techniques.

Introduction to the Macro Facility /A Generating a Suffix for a Macro Variable Reference 9

Generating Repetitive Pieces of Text Using %D0 Loops

“Conditionally Generating SAS Code” on page 8 presents a %DO-%END group of
statements to conditionally execute several SAS statements. To generate repetitive
pieces of text, use an iterative %DO loop. For example, the following macro, NAMES,
uses an iterative %DO loop to create a series of names to be used in a DATA statement:

$macro names(name= ,number=);
%2do n=1 %to &number;
&name&n
%end;
gmend names;

The macro NAMES creates a series of names by concatenating the value of the
parameter NAME and the value of the macro variable N. You supply the stopping value
for N as the value of the parameter NUMBER, as in the following DATA statement:

data %names(name=dsn,number=5);
Submitting this statement produces the following complete DATA statement:

data dsnl dsn2 dsn3 dsn4 dsn5;

Note: You can also execute a %DO loop conditionally with %DO %WHILE and %DO
%UNTIL statements. See Chapter 13, “Macro Language Dictionary,” on page 163 for
details about these statements. A

Generating a Suffix for a Macro Variabhle Reference

Suppose that, when you generate a numbered series of names, you always want to
put the letter X between the prefix and the number. The macro NAMESX inserts an X
after the prefix you supply:

$macro namesx(name=,number=);
%2do n=1 %to &number;
&name.x&n
%end;
gmend namesx;

The period is a delimiter at the end of the reference &NAME. The macro processor
uses the delimiter to distinguish the reference &NAME followed by the letter X from
the reference &NAMEX. Here is an example of calling the macro NAMESX in a DATA
statement:

data %namesx(name=dsn,number=3);
Submitting this statement produces the following statement:
data dsnxl dsnx2 dsnx3;

See Chapter 3, “Macro Variables,” on page 19 for more information about using a
period as a delimiter in a macro variable reference.

10 Other Features of the Macro Language A Chapter 1

Other Features of the Macro Language

Although subsequent sections go into far more detail on the various elements of the
macro language, this section highlights some of the possibilities, with pointers to more
information.

macro statements
This section has illustrated only a few of the macro statements, such as %MACRO
and %IF-%THEN. Many other macro statements exist, some of which are valid in
open code, while others are valid only in macro definitions. For a complete list of
macro statements, refer to “Macro Statements” on page 147.

macro functions
Macro functions are functions defined by the macro facility. They process one or
more arguments and produce a result. For example, the %SUBSTR function
creates a substring of another string, while the %UPCASE function converts
characters to uppercase. A special category of macro functions, the macro quoting
functions, mask special characters so they are not misinterpreted by the macro
Processor.

There are two special macro functions, %SYSFUNC and %QSYSFUNC, that
provide access to SAS language functions or user-written functions generated with
SAS/TOOLKIT. You can use %SYSFUNC and %QSYSFUNC with new functions in
Base SAS software to obtain the values of SAS host, base, or graphics options.
These functions also enable you to open and close SAS data sets, test data set
attributes, or read and write to external files. Another special function is
%SYSEVALF, which enables your macros to perform floating-point arithmetic.

For a list of macro functions, refer to “Macro Functions” on page 149. For a
discussion of the macro quoting functions, refer to Chapter 7, “Macro Quoting,” on
page 75. For the syntax of calling selected Base SAS functions with %SYSFUNC,
refer to Appendix 3, “Syntax for Selected Functions Used with the %SYSFUNC
Function,” on page 321.

autocall macros
Autocall macros are macros defined by SAS that perform common tasks, such as
trimming leading or trailing blanks from a macro variable’s value or returning the
data type of a value. For a list of autocall macros, refer to “Selected Autocall
Macros Provided with SAS Software” on page 157.

automatic macro variables
Automatic macro variables are macro variables created by the macro processor.
For example, SYSDATE contains the date SAS is invoked. See Chapter 12, “Macro
Language Elements,” on page 147 for a list of automatic macro variables, and
Chapter 13, “Macro Language Dictionary,” on page 163 for a description of these
automatic macro variables.

macro facility interfaces
Interfaces with the macro facility provide a dynamic connection between the macro
facility and other parts of SAS, such as the DATA step, SCL code, the SQL
procedure, and SAS/CONNECT software. For example, you can create macro
variables based on values within the DATA step using CALL SYMPUT and
retrieve the value of a macro variable stored on a remote host using the
%SYSRPUT macro statement. For more information on these interfaces, refer to
Chapter 8, “Interfaces with the Macro Facility,” on page 95.

11

CHAPTER

SAS Programs and Macro
Processing

Introduction to SAS Programs and Macro Processing 11
How SAS Processes Statements without Macro Activity 12
How SAS Processes Statements with Macro Activity 14

Introduction to SAS Programs and Macro Processing

This section describes the typical pattern that SAS follows to process a program.
These concepts are helpful for understanding how the macro processor works with other
parts of SAS. However, they are not required for most macro programming. They are
provided so that you can understand what is going on behind the scenes.

Note: The concepts in this section present a logical representation, not a detailed
physical representation, of how SAS software works. A

When you submit a program, it goes to an area of memory called the input stack.
This is true for all program and command sources: the SAS windowing environment,
the SCL SUBMIT block, the SCL. COMPILE command, or from batch or noninteractive
sessions. The input stack shown in the following figure contains a simple SAS program
that displays sales data. The first line in the program is the top of the input stack.

12 How SAS Processes Statements without Macro Activity A Chapter 2

Figure 2.1 Submitted Programs are Sent to the Input Stack

DATA Step Compiler SCL Compiler Macro Processor Command Processor

./

Word Scanner

y

Input Stack

data sales (drop=lastyr);

infile inl;

input ml-ml2 lastyr; total=ml2+lastyr;
run;
%let list=ml m7 ml2 total;

proc print;
var &list;
run;

. . Batch or
Dlsplz}y Manager SCL Submit Block SCL Compile Noninteractive
Submit Command Command L

Submission

Display Manager
Command Line

Once a program reaches the input stack, SAS transforms the stream of characters
into individual tokens. These tokens are transferred to different parts of SAS for
processing, such as the DATA step compiler and the macro processor. Knowing how
SAS recognizes tokens and how they are transferred to different parts of SAS will help
you understand how the various parts of SAS and the macro processor work together
and how to control the timing of macro execution in your programs. The following
sections show you how a simple program is tokenized and processed.

How SAS Processes Statements without Macro Activity

The process that SAS uses to extract words and symbols from the input stack is
called tokenization. Tokenization is performed by a component of SAS called the word
scanner, as shown in Figure 2.2 on page 13. The word scanner starts at the first
character in the input stack and examines each character in turn. In doing so, the word
scanner assembles the characters into tokens. There are four general types of tokens:

Literal
a string of characters enclosed in quotation marks.

SAS Programs and Macro Processing /A How SAS Processes Statements without Macro Activity 13

Number
digits, date values, time values, and hexadecimal numbers.

Name
a string of characters beginning with an underscore or letter.

Special
any character or group of characters that have special meaning to SAS. Examples
of special characters include:

X /4 kk ;S () L& % =

Figure 2.2 The Sample Program before Tokenization

(Word Scanner w

Input Stack

data sales (drop=lastyr);
infile inl;
input ml-ml2 lastyr;
total=ml2+lastyr;

run;

The first SAS statement in the input stack in the preceding figure contains eight
tokens (four names and four special characters).

datasales(drop=lastyr);

When the word scanner finds a blank or the beginning of a new token, it removes a
token from the input stack and transfers it to the bottom of the queue.

In this example, when the word scanner pulls the first token from the input stack, it
recognizes the token as the beginning of a DATA step. The word scanner triggers the
DATA step compiler, which begins to request more tokens. The compiler pulls tokens
from the top of the queue, as shown in the following figure.

How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.3 The Word Scanner Obtains Tokens

(/' Compiler ‘\\ //’ Word Scanner ‘\\
L D=

sales

(drop

lastyr

)

fkput Stack

infile inl; C)

input ml-ml2 lastyr;

total=ml2+lastyr;
run;

The compiler continues to pull tokens until it recognizes the end of the DATA step (in
this case, the RUN statement), which is called a DATA step boundary, as shown in the
following figure. When the DATA step compiler recognizes the end of a step, the step is
executed, and the DATA step is complete.

Figure 2.4 The Word Scanner Sends Tokens to the Compiler

(/’ Compiler ‘\\ //’ Word Scanner ‘\\
DATA SALES (DROP = LASTYR) ; N (Z:
INFILE IN1;
INPUT M1 - M12 LASTYR ;
RUN j

Input Stack

In most SAS programs with no macro processor activity, all information that the
compiler receives comes from the submitted program.

How SAS Processes Statements with Macro Activity

In a program with macro activity, the macro processor can generate text that is
placed on the input stack to be tokenized by the word scanner. The example in this
section shows you how the macro processor creates and resolves a macro variable. To
illustrate how the compiler and the macro processor work together, the following figure
contains the macro processor and the macro variable symbol table. SAS creates the
symbol table at the beginning of a SAS session to hold the values of automatic and
global macro variables. SAS creates automatic macro variables at the beginning of a
SAS session. For the sake of illustration, the symbol table is shown with only one
automatic macro variable, SYSDAY.

SAS Programs and Macro Processing /A How SAS Processes Statements with Macro Activity 15

Figure 2.5 The Macro Processor and Symbol Table

(Compiler \ W
K J Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

%let file=inl;

data sales (drop=lastyr);
infile &file;
input ml-ml2 lastyr;
total=ml2+lastyr;

run;

Whenever the word scanner encounters a macro trigger, it sends information to the
macro processor. A macro trigger is either an ampersand (&) or percent sign (%)
followed by a nonblank character. As it did in the previous example, the word scanner
begins to process this program by examining the first characters in the input stack. In
this case, the word scanner finds a percent sign (%) followed by a nonblank character.
The word scanner recognizes this combination of characters as a potential macro
language element, and triggers the macro processor to examine % and LET, as shown in
the following figure.

Figure 2.6 The Macro Processor Examines LET

s p— N
N J

Word Scanner

Symbol Table

SYSDAY Friday

4 \
Macro Processor

Input Stack

let) file=inl;

data sales (drop=lastyr);
infile &file;
input ml-ml2 lastyr;
total=ml2+lastyr;

run;

When the macro processor recognizes a macro language element, it begins to work
with the word scanner. In this case, the macro processor removes the %2LET statement,
and writes an entry in the symbol table, as shown in the following figure.

16

How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.7 The Macro Processor Writes to the Symbol Table

Compiler

‘\\ (/’ Word Scanner <\\

-
N

J

Symbol Table

SYSDAY
FILE

Friday

Macro Processor

Input Stack

data sales (drop=lastyr);
infile &file;
input ml-ml2 lastyr;
total=ml2+lastyr;

run;

From the time the word scanner triggers the macro processor until that macro
processor action is complete, the macro processor controls all activity. While the macro
processor is active, no activity occurs in the word scanner or the DATA step compiler.

When the macro processor is finished, the word scanner reads the next token (the
DATA keyword in this example) and sends it to the compiler. The word scanner triggers
the compiler, which begins to pull tokens from the top of the queue, as shown in the

following figure.

Figure 2.8 The Word Scanner Resumes Tokenization

-

Compiler \\

N

4 Word Scanner \\

data

<::::> Symbol Table
sales
(drop SYSDAY Friday
= FILE inl
lastyr)

\\ Y

Macro Processor

Input Stack

infile &ff;;;

input ml-ml2 lastyr;

total=ml2+lastyr;
run;

As it processes each token, SAS removes the protection that the macro quoting
functions provide to mask special characters and mnemonic operators.

If the word scanner finds an ampersand followed by a nonblank character in a token,
it triggers the macro processor to examine the next token, as shown in the following

figure.

SAS Programs and Macro Processing /A How SAS Processes Statements with Macro Activity 17

Figure 2.9 The Macro Processor Examines &FILE

(Compiler \
k\PATA SALES (DROP = LASTYR) ; Y,

Word Scanner

Symbol Table

SYSDAY Friday
FILE inl

infile
&

Macro Processor

///Iﬁ;ut Stack

input ml-ml2 lastyr;
total=ml2+lastyr;
run;

The macro processor examines the token and recognizes a macro variable that exists
in the symbol table. The macro processor removes the macro variable name from the
input stack and replaces it with the text from the symbol table, as shown in the
following figure.

Figure 2.10 The Macro Processor Generates Text to the Input Stack

Compiler ‘\\ Word Scanner
k\PATA SALES (DROP = LASTYR) ; Y,
Symbol Table

SYSDAY Friday

infile

Macro Processor

Pﬁ;ut Stack

inl|;
input ml-ml2 lastyr;
total=ml2+lastyr;
run;

The compiler continues to request tokens, and the word scanner continues to supply
them, until the entire input stack has been read as shown in the following figure.

18 How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.11 The Word Scanner Completes Processing

(/' Compiler \\ /' Word Scanner ‘\
DATA SALES (DROP = LASTYR) ; N run
:) . Symbol Table
INFILE IN1 ;
INPUT M1 - M12 LASTYR; SYSDAY Friday
TOTAL = M12 + LASTYR;) FILE inl
_

Macro Processor

Input Stack

If the end of the input stack is a DATA step boundary, as it is in this example, the
compiler compiles and executes the step. SAS then frees the DATA step task. Any
macro variables that were created during the program remain in the symbol table. If the
end of the input stack is not a step boundary, the processed statements remain in the
compiler. Processing resumes when more statements are submitted to the input stack.

19

CHAPTER

Macro Variables

Introduction to Macro Variables 19
Macro Variables Defined by SAS 20
Macro Variables Defined by Users 22
Creating Macro Variables and Assigning Values 22
Using Macro Variables 25
Combining Macro Variable References with Text 21
Delimiting Macro Variable Names within Text 27
Creating a Period to Follow Resolved Text 28
Displaying Macro Variable Values 28
Referencing Macro Variables Indirectly 29
Generating a Series of Macro Variable References with a Single Macro Call 29
Using More Than Two Ampersands 30
Manipulating Macro Variable Values with Macro Functions 30

Introduction to Macro Variahles

Macro variables are tools that enable you to dynamically modify the text in a SAS
program through symbolic substitution. You can assign large or small amounts of text
to macro variables, and after that, you can use that text by simply referencing the
variable that contains it.

Macro variable values have a maximum length of 65,534 characters. The length of a
macro variable is determined by the text assigned to it instead of an explicit length
declaration. So its length varies with each value it contains. Macro variables contain
only character data. However, the macro facility has features that enable a variable to
be evaluated as a number when it contains character data that can be interpreted as a
number. The value of a macro variable remains constant until it is explicitly changed.
Macro variables are independent of SAS data set variables.

Macro variables defined by macro programmers are called user-defined macro
variables. Those defined by SAS are called automatic macro variables. You can define
and use macro variables anywhere in SAS programs, except within data lines.

When a macro variable is defined, the macro processor adds it to one of the program’s
macro variable symbol tables. When a macro variable is defined in a statement that is
outside a macro definition (called open code) or when the variable is created
automatically by SAS (except SYSPBUFF), the variable is held in the global symbol
table, which SAS creates at the beginning of a SAS session. When a macro variable is
defined within a macro and is not explicitly defined as global, the variable is typically
held in the macro’s local symbol table, which SAS creates when the macro starts
executing. For more information about symbol tables, see Chapter 2, “SAS Programs
and Macro Processing,” on page 11 and Chapter 5, “Scopes of Macro Variables,” on page
41.

20

Macro Variables Defined by SAS A Chapter 3

When it is in the global symbol table, a macro variable exists for the remainder of
the current SAS session. A variable in the global symbol table is called a global macro
variable. 1t has global scope because its value is available to any part of the SAS session.

When it is in a local symbol table, a macro variable exists only during execution of
the macro in which it is defined. A variable in a local symbol table is called a local
macro variable. It has local scope because its value is available only while the macro is
executing. Chapter 2, “SAS Programs and Macro Processing,” on page 11 contains
figures that illustrate a program with a global and a local symbol table.

You can use the %PUT statement to view all macro variables available in a current
SAS session. See %PUT in Chapter 13, “Macro Language Dictionary,” on page 163 and
also in Chapter 10, “Macro Facility Error Messages and Debugging,” on page 111.

Macro Variables Defined by SAS

When you invoke SAS, the macro processor creates automatic macro variables that
supply information related to the SAS session. Automatic variables are global except
SYSPBUFF, which is local.

To use an automatic macro variable, reference it with an ampersand followed by the
macro variable name (for example, &SYSJOBID). This FOOTNOTE statement contains
references to the automatic macro variables SYSDAY and SYSDATE:

footnote "Report for &sysday, &sysdate9";

If the current SAS session is invoked on December 17, 2002, macro variable
resolution causes SAS to receive this statement:

FOOTNOTE "Report for Tuesday, 17DEC2002";

Automatic macro variables are often useful in conditional logic such as a %IF
statement with actions determined by the value that is returned. %IF is described in
Chapter 13, “Macro Language Dictionary,” on page 163.

You can assign values to automatic macro variables that have read and write status.
However, you cannot assign a value to an automatic macro variable that has read-only
status. The following table lists the automatic macro variables that are supplied by
Base SAS software and their read/write status. They are all described in Chapter 13,
“Macro Language Dictionary,” on page 163.

Use %PUT _AUTOMATIC_ to view all available automatic macro variables.

There are also system-specific macro variables that are created only on a particular
platform. These are documented in the host companion, and common ones are listed in
Chapter 11, “Writing Efficient and Portable Macros,” on page 133. Other SAS software
products also provide macro variables, which are described in the documentation for the
product that uses them.

Table 3.1 Automatic Macro Variables by Category

Status Variable Contains
Read and Write SYSBUFFER unmatched text from %INPUT
SYSCC the current condition code that SAS returns to your

operating environment (the operating environment
condition code)

SYSCMD last unrecognized command from the command line
of a macro window

Macro Variables /. Macro Variables Defined by SAS

21

Status Variable Contains

SYSDEVIC name of current graphics device

SYSDMG return code that reflects an action taken on a
damaged data set

SYSDSN name of most recent SAS data set in two fields

SYSFILRC return code set by the FILENAME statement

SYSLAST name of most recent SAS data set in one field

SYSLCKRC return code set by the LOCK statement

SYSLIBRC return code set by the LIBNAME statement

SYSMSG message for display in macro window

SYSPARM value specified with the SYSPARM= system option

SYSPBUFF text of macro parameter values

SYSRC various system-related return codes

read-only SYSCHARWIDTH the character width value

SYSDATE the character value representing the date a SAS job
or session began executing (two-digit year)

SYSDATE9 the character value representing the date a SAS job
or session began executing (four-digit year)

SYSDAY day of week SAS job or session began executing

SYSENV foreground or background indicator

SYSERR return code set by SAS procedures and the DATA
step

SYSINDEX number of macros that have begun execution during
this session

SYSINFO return code information

SYSJOBID name of current batch job or userid (varies by host
environment)

SYSMACRONAME name of current executing macro

SYSMENV current macro execution environment

SYSNCPU the current number of processors that SAS may use
in computation

SYSPROCESSID the process id of the current SAS process

SYSPROCESSNAME the process name of the current SAS process

SYSPROCNAME name of current procedure being processed

SYSSCP the abbreviation of an operating system

SYSSCPL the name of an operating system

SYSSITE the number assigned to your site

SYSSTARTID the id generated from the last STARTSAS statement

SYSSTARTNAME the process name generated from the last

STARTSAS statement

22

Macro Variables Defined by Users A Chapter 3

Status Variable Contains
SYSTIME the character value of the time a SAS job or session
began executing
SYSUSERID the userid or login of the current SAS process
SYSVER release or version number of SAS software executing
SYSVLONG release number and maintenance level of SAS
software

Macro Variables Defined by Users

You can create your own macro variables, change their values, and define their scope.
You can define a macro variable within a macro, and you can also explicitly define it as
a global variable, by defining it with the %GLOBAL statement. Macro variable names
must start with a letter or an underscore and can be followed by letters or digits. You
can assign any name to a macro variable as long as the name is not a reserved word.
The prefixes AF, DMS, SQL, and SYS are not recommended because they are frequently
used in SAS software for automatic macro variables. Thus, using one of these prefixes
can cause a name conflict with an automatic macro variable. For a complete list of
reserved words in the macro language, see Appendix 1, “Reserved Words in the Macro
Facility,” on page 317. If you assign a macro variable name that is not valid, an error
message is printed in the SAS log.

You can use %PUT _ALL_ to view all user-created macro variables. See %PUT in
Chapter 13, “Macro Language Dictionary,” on page 163.

Creating Macro Variables and Assigning Values

The simplest way to create and assign a value to a macro variable is to use the
macro program statement %LET, as in

%let dsname=Newdata;

DSNAME is the name of the macro variable. Newdata is the value of the macro
variable DSNAME. The value of a macro variable is simply a string of characters. The
characters can include any letters, numbers, or printable symbols found on your
keyboard, and blanks between characters. The case of letters is preserved in a macro
variable value. Some characters, such as unmatched quotation marks, require special
treatment, which is described later.

If a macro variable already exists, a value assigned to it replaces its current value. If
a macro variable or its value contains macro triggers (% or &), the trigger is evaluated
before the value is assigned. In the following example, &name is resolved to cary and
then it is assigned as the value of city in the following statements:

%$let name=Cary;
$let city=&name;

Generally, the macro processor treats alphabetic characters, digits, and symbols
(except & and %) as characters. It can also treat & and % as characters using a special
treatment, which is described later. It does not make a distinction between character
and numeric values as the rest of SAS does. (However, the %EVAL and %SYSEVALF
functions can evaluate macro variables as integers or floating point numbers. See
Chapter 13, “Macro Language Dictionary,” on page 163.)

Macro Variables /\ Creating Macro Variables and Assigning Values 23

Macro variable values can represent text to be generated by the macro processor or
text to be used by the macro processor. Values can range in length from 0 to 65,534
characters. If you omit the value argument, the value is null (0 characters). By default,
leading and trailing blanks are not stored with the value.

In addition to the %LET statement, other features of the macro language that create
macro variables are

O iterative %DO statement

0 %GLOBAL statement

0 %INPUT statement

0 INTO clause of the SELECT statement in SQL

o %LOCAL statement

o %MACRO statement

o SYMPUT routine and SYMPUTN routine in SCL
0o %WINDOW statement.

The following table describes how to assign a variety of types of values to macro

variables.

Table 3.2 Types of Assignments for Macro Variable Values

To assign ...

Use...

Constant text

Digits

Arithmetic
expressions

A null value

a character string. The following statements show several ways
that the value maple can be assigned to macro variable STREET. In
each case, the macro processor stores the five-character value maple
as the value of STREET. The leading and trailing blanks are not

stored.
%let street=maple;

%let street= maple;
%let street=maple ;

Note: Quotation marks are not required. If quotation marks are
used, they become part of the value.

the appropriate digits. This example creates the macro variables

NUM and TOTALSTR:
%let num=123;
%let totalstr=100+200;

The macro processor does not treat 123 as a number or evaluate the
expression 100+200. Instead, the macro processor treats all the
digits as characters.

the %EVAL function, for example,
$let num=%eval (100+200); / * produces 300 * /

use the %2SYSEVALF function, for example,
%let num=%sysevalf(100+1.597); / * produces 101.597 * /

For more information, see “Macro Evaluation Functions” on page
151 and details on the functions in Chapter 13, “Macro Language
Dictionary,” on page 163.

no assignment for the value argument. For example,
%let country=;

24

Creating Macro Variables and Assigning Values A Chapter 3

To assign ...

Use...

A macro
variable
reference

A macro
invocation

a macro variable reference, ¯o-variable. For example,
%let street=Maple;

%let num=123;

%let address=&num &street Avenue;

This example shows multiple macro references that are part of a
text expression. The macro processor attempts to resolve text
expressions before it makes the assignment. Thus, the macro
processor stores the value of macro variable ADDRESS as 123
Maple Avenue.

You can treat ampersands and percent signs as literals by using the
%NRSTR function to mask the character so that the macro
processor treats it as text instead of trying to interpret it as a
macro call. See Chapter 12, “Macro Language Elements,” on page
147 and Chapter 7, “Macro Quoting,” on page 75 for information.

a macro call, %macro-name. For example,
%let status=%wait;

When the %LET statement executes, the macro processor also
invokes the macro WAIT. The macro processor stores the text
produced by the macro WAIT as the value of STATUS.

To prevent the macro from being invoked when the %LET statement
executes, use the 2NRSTR function to mask the percent sign:

%let status=%nrstr(%wait);
The macro processor stores swait as the value of STATUS.

Macro Variables /A Using Macro Variables 25

To assign ... Use...

Blanks and macro quoting function %STR or %NRSTR around the value. This

special action masks the blanks or special characters so that the macro

characters processor interprets them as text. See “Macro Quoting Functions”
on page 151 and Chapter 7, “Macro Quoting,” on page 75. For
example,

%let state=%str(North Carolina);
%let town=%str(Taylor%’s Pond);
%let store=%nrstr(Smith&Jones);
%let plotit=%str(

proc plot;

plot income*age;

run;);
The definition of macro variable TOWN demonstrates using %STR
to mask a value containing an unmatched quotation mark. “Macro
Quoting Functions” on page 151 and Chapter 7, “Macro Quoting,”
on page 75 discuss macro quoting functions that require unmatched
quotation marks and other symbols to be marked.

The definition of macro variable PLOTIT demonstrates using %STR
to mask blanks and special characters (semicolons) in macro
variable values. When a macro variable contains complete SAS
statements, the statements are easier to read if you enter them on
separate lines with indentions for statements within a DATA or
PROC step. Using a macro quoting function retains the significant
blanks in the macro variable value.

Value from a the SYMPUT routine. This example puts the number of
DATA step observations in a data set into a FOOTNOTE statement where

AGE is greater than 20:
data _null_;
set in.permdata end=final;
if age>20 then n+1;
if final then call symput(’number’,trim(left(n)));
run;
footnote "&number Observations have AGE>20";

During the last iteration of the DATA step, the SYMPUT routine
creates a macro variable named NUMBER whose value is the value
of N. (SAS also issues a numeric-to-character conversion message.)
The TRIM and the LEFT functions remove the extra space
characters from the DATA step variable N before its value is
assigned to the macro variable NUMBER.

The program generates this FOOTNOTE statement:

FOOTNOTE "Observations have AGE>20";

For a discussion of SYMPUT, including information on preventing
the numeric-character message, see Chapter 13, “Macro Language
Dictionary,” on page 163.

Using Macro Variables

After a macro variable is created, you typically use the variable by referencing it
with an ampersand preceding its name (&variable-name), which is called a macro
variable reference. These references perform symbolic substitutions when they resolve
to their value. You can use these references anywhere in a SAS program. To resolve a
macro variable reference that occurs within a literal string, enclose the string in double

26

Using Macro Variables A Chapter 3

quotation marks. Macro variable references that are enclosed in single quotation marks
are not resolved. Compare the following statements that assign a value to macro
variable DSN and use it in a TITLE statement:

$let dsn=Newdata;
titlel "Contents of Data Set &dsn";
title2 ’'Contents of Data Set &dsn’;

In the first TITLE statement, the macro processor resolves the reference by replacing
&DSN with the value of macro variable DSN. In the second TITLE statement, the
value for DSN does not replace &DSN. SAS sees the following statements:

TITLEl "Contents of Data Set Newdata";
TITLE2 'Contents of Data Set &dsn’;

You can refer to a macro variable as many times as you need to in a SAS program.
The value remains constant until you change it. For example, this program refers to
macro variable DSN twice:

%let dsn=Newdata;
data temp;

set &dsn;

if age>=20;
run;

proc print;
title "Subset of Data Set &dsn";

run;

Each time the reference &DSN appears, the macro processor replaces it with
Newdata. Thus, SAS sees these statements:

DATA TEMP;
SET NEWDATA;
IF AGE>=20;

RUN;

PROC PRINT;
TITLE "Subset of Data Set NewData";
RUN;

Note: If you reference a macro variable that does not exist, a warning message is
printed in the SAS log. For example, if macro variable JERRY is misspelled as JERY,
the following produces an unexpected result:

$let jerry=student;
data temp;

x="produced by &jery";
run;

This produces the following message:
WARNING: Apparent symbolic reference JERY not resolved.

A

Macro Variables /A CGombining Macro Variable References with Text 27

Combining Macro Variable References with Text

It is often useful to place a macro variable reference next to leading or trailing text
(for example, DATA=PERSNL&YR.EMPLOYES, where &YR contains two characters
for a year), or to reference adjacent variables (for example, & MONTH&YR). This
enables you to reuse the same text in several places or to reuse a program because you
can change values for each use.

To reuse the same text in several places, you can write a program with macro
variable references representing the common elements. You can change all the locations
with a single %LET statement, as shown:

¢let name=sales;
data newé&name;
set save.&name;
more SAS statements
if units>100;

run;
After macro variable resolution, SAS sees these statements:

DATA NEWSALES;
SET SAVE.SALES;
more SAS statements
IF UNITS>100;
RUN;

Notice that macro variable references do not require the concatenation operator as
the DATA step does. SAS forms the resulting words automatically.

Delimiting Macro Variable Names within Text

Sometimes when you use a macro variable reference as a prefix, the reference does
not resolve as you expect if you simply concatenate it. Instead, you might need to
delimit the reference by adding a period to the end of it.

A period immediately following a macro variable reference acts as a delimiter. That
is, a period at the end of a reference forces the macro processor to recognize the end of
the reference. The period does not appear in the resulting text.

Continuing with the example above, suppose that you need another DATA step that
uses the names SALES1, SALES2, and INSALES.TEMP. You might add the following
step to the program:

/* first attempt to add suffixes--incorrect */
data &namel &name2;
set in&name.temp;

run;
After macro variable resolution, SAS sees these statements:

DATA &NAME1l &NAME2;
SET INSALESTEMP;
RUN;

None of the macro variable references have resolved as you intended. The macro
processor issues warning messages, and SAS issues syntax error messages. Why?

Because NAME1 and NAME2 are valid SAS names, the macro processor searches for
those macro variables rather than for NAME, and the references pass into the DATA
statement without resolution.

28

Displaying Macro Variable Values A Chapter 3

In a macro variable reference, the word scanner recognizes that a macro variable
name has ended when it encounters a character that is not allowed in a SAS name.
However, you can use a period (.) as a delimiter for a macro variable reference. For
example, to cause the macro processor to recognize the end of the word NAME in this
example, use a period as a delimiter between &NAME and the suffix:

/* correct version */
data &name.l &name.2;

SAS now sees this statement:

DATA SALES1 SALES2;

Creating a Period to Follow Resolved Text

Sometimes you need a period to follow the text resolved by the macro processor. For
example, a two-level data set name needs to include a period between the libref and
data set name.

When the character following a macro variable reference is a period, use two periods.
The first is the delimiter for the macro reference, and the second is part of the text. For
example,

set in&name..temp;
After macro variable resolution, SAS sees this statement:
SET INSALES.TEMP;

You can end any macro variable reference with a delimiter, but the delimiter is
necessary only if the characters that follow can be part of a SAS name. For example,
both of these TITLE statements are correct:

title "&name.--a report";
title "&name--a report";

They produce:

TITLE "sales--a report";

Displaying Macro Variable Values

The simplest way to display macro variable values is to use the %PUT statement,
which writes text to the SAS log. For example, the statements

¢let a=first;
¢let b=macro variable;
gput &a ***gb***;

write
first ***macro variablex***

You can also use a %PUT statement to view available macro variables. %PUT
provides several options that allow you to view individual categories of macro variables.
%PUT is described in Chapter 13, “Macro Language Dictionary,” on page 163.

The system option SYMBOLGEN displays the resolution of macro variables. For this
example, assume that macro variables PROC and DSET have the values GPLOT and
SASUSER.HOUSES, respectively.

Macro Variables /\ Generating a Series of Macro Variable References with a Single Macro Call 29

options symbolgen;
$let title "%upcase(&proc) of %upcase(&dset)";

The SYMBOLGEN option prints to the log:

SYMBOLGEN: Macro variable PROC resolves to gplot
SYMBOLGEN: Macro variable DSET resolves to sasuser.houses

For more information on debugging macro programs, see Chapter 10, “Macro Facility
Error Messages and Debugging,” on page 111.

Referencing Macro Variables Indirectly

The macro variable references shown so far have been direct macro references that
begin with one ampersand: &name. However, it is also useful to be able to indirectly
reference macro variables that belong to a series so that the name is determined when
the macro variable reference resolves. The macro facility provides indirect macro
variable referencing, which enables you to use an expression (for example, CITY&N) to
generate a reference to one of a series of macro variables. For example, you could use
the value of macro variable N to reference a variable in the series of macro variables
named CITY1 to CITY20. If N has the value 8, the reference would be to CITYS8. If the
value of N is 3, the reference would be to CITY3.

Although for this example the type of reference you want is CITY&N, the following
example will not produce the results that you expect, which is the value of &N
appended to CITY:

%put &city&n; /* incorrect */

This produces a warning message saying that there is no macro variable CITY
because the macro facility has tried to resolve &CITY and then &N and concatenate
those values.

When you use an indirect macro variable reference, you must force the macro
processor to scan the macro variable reference more than once and resolve the desired
reference on the second, or later, scan. To force the macro processor to rescan a macro
variable reference, you use more than one ampersand in the macro variable reference.
When the macro processor encounters multiple ampersands, its basic action is to
resolve two ampersands to one ampersand. For example, to append the value of &N to
CITY and then reference the appropriate variable name, you use:

gput &&city&n; /* correct */

Assuming that &N contains 6, when the macro processor receives this statement, it
performs the following steps:

1 resolves && to &

2 passes CITY as text
3 resolves &N into 6
4

returns to the beginning of the macro variable reference, &CITY®6, starts resolving
from the beginning again, and prints the value of CITY®6.

Generating a Series of Macro Variable References with a Single
Macro Call

Using indirect macro variable references, you can generate a series of references with
a single macro call by using an iterative %DO loop. The following example assumes that

30 Using More Than Two Ampersands /A Chapter 3

the macro variables CITY1 through CITY10 contain the respective values Cary, New
York, Chicago, Los Angeles, Austin, Boston, Orlando, Dallas, Knoxville, and Asheville:

gmacro listthem;
%do n=1 %to 10; &&cityé&n
gend;

gmend listthem;

$put %$listthem;
This program writes the following to the SAS log:

Cary New York Chicago Los Angeles Austin Boston
Orlando Dallas Knoxville Asheville

Using More Than Two Ampersands

You can use any number of ampersands in an indirect macro variable reference,
although using more than three is rare. Regardless of how many ampersands are used
in this type of reference, the macro processor performs the following steps to resolve the
reference. For example,

$let var=city;
%let n=6;
gput &&&varéa&n;

1 It resolves the entire reference from left-to-right. If a pair of ampersands (&&) is
encountered, the pair is resolved to a single ampersand, then the next part of the
reference is processed. In this example, &&&VAR&N becomes &CITY6.

2 It returns to the beginning of the preliminary result and starts resolving again
from left-to-right. When all ampersands have been fully processed, the resolution
is complete. In this example, &CITY6 resolves to Boston, and the resolution
process is finished.

Note: A macro call cannot be part of the resolution during indirect macro variable
referencing. A

TIP: In some cases, using indirect macro references with triple ampersands increases
the efficiency of the macro processor. For more information see Chapter 11, “Writing
Efficient and Portable Macros,” on page 133.

Manipulating Macro Variable Values with Macro Functions

When you define macro variables, you can include macro functions in the expressions
to manipulate the value of the variable before the value is stored. For example, you can
use functions that scan other values, evaluate arithmetic and logical expressions, and
remove the significance of special characters such as unmatched quotation marks.

To scan for words in macro variable values, use the %SCAN function. For example,

$let address=123 maple avenue;
$let frstword=%scan(&address,l);

The first %#LET statement assigns the string 123 maple avenue to macro variable
ADDRESS. The second %LET statement uses the %SCAN function to search the source
(first argument) and retrieve the first word (second argument). Because the macro

Macro Variables / Manipulating Macro Variable Values with Macro Functions 31

processor executes the %SCAN function before it stores the value, the value of
FRSTWORD is the string 123. (The %SCAN function is discussed in Chapter 13,
“Macro Language Dictionary,” on page 163.)

For more information about macro functions, see Chapter 12, “Macro Language
Elements,” on page 147.

32

33

CHAPTER

Macro Processing

Introduction to Macro Processing 33

Defining and Calling Macros 33

How the Macro Processor Compiles a Macro Definition 34
How the Macro Processor Executes a Compiled Macro 36
Summary of Macro Processing 40

Introduction to Macro Processing

This section describes macro processing and shows the typical pattern that SAS
follows to process a program containing macro elements. For most macro programming,
you do not need this level of detail. It is provided to help you understand what is going
on behind the scenes.

Defining and Calling Macros

Macros are compiled programs that you can call in a submitted SAS program or from
a SAS command prompt. Like macro variables, you generally use macros to generate
text. However, macros provide additional capabilities:
0 Macros can contain programming statements that enable you to control how and
when text is generated.
O Macros can accept parameters. This enables you to write generic macros that can
serve a number of uses.

To compile a macro, you must submit a macro definition. The general form of a
macro definition is

%9MACRO macro-name;
<macro_text>

%MEND <macro_name>;

where macro_name is a unique SAS name that identifies the macro and macro_text is
any combination of macro statements, macro calls, text expressions, or constant text.

When you submit a macro definition, the macro processor compiles the definition and
produces a member in the session catalog. The member consists of compiled macro
program statements and text. The distinction between compiled items and noncompiled
(text) items is important for macro execution. Examples of text items include:

O macro variable references
O nested macro calls

34 How the Macro Processor Compiles a Macro Definition /A Chapter 4

macro functions, except %STR and %NRSTR

arithmetic and logical macro expressions

text to be written by %PUT statements

field definitions in %WINDOW statements

model text for SAS statements and SAS windowing environment commands.

O oo o o

When you want to call the macro, you use the form
%macro_name

How the Macro Processor Compiles a Macro Definition

When you submit a SAS program, the contents of the program goes to an area of
memory called the input stack. The example program in the following figure contains a
macro definition, a macro call and a PROC PRINT step. This section illustrates how the
macro definition in the example program is compiled and stored.

Figure 4.1 The Macro APP

Input Stack

%macro app(goal);
%$1f &sysday=Friday %then
%do;
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
%end;
mend app;
%app (10000)
proc print;
run;

Using the same process described in Chapter 2, “SAS Programs and Macro
Processing,” on page 11 the word scanner begins tokenizing the program. When the
word scanner detects % followed by a nonblank character in the first token, it triggers
the macro processor. The macro processor examines the token and recognizes the
beginning of a macro definition. The macro processor pulls tokens from the input stack
and compiles until the %2MEND statement terminates the macro definition (Figure 4.2
on page 35).

During macro compilation, the macro processor

O creates an entry in the session catalog.

O compiles and stores all macro program statements for that macro as macro
instructions.

o stores all noncompiled items in the macro as text.
Note: Text items are underlined in the illustrations in this section. A

If the macro processor detects a syntax error while compiling the macro, it checks the
syntax in the rest of the macro and issues messages for any additional errors it finds.

Macro Processing /A How the Macro Processor Compiles a Macro Definition 35

However, the macro processor does not store the macro for execution. A macro that the
macro processor compiles but does not store is called a dummy macro.

Figure 4.2 Macro APP in the Input Stack

(Compiler

r Word Scanner \

N

\
J

Macro Catalog

APP Macro

gmacro app(goal);
%if &sysday=Friday %then

%do;
data thisweek; /
set lastweek;

Symbol Table

SYSDAY Friday

/ Macro Processor

Input Stack

<:)if totsales > &goal
then bonus = .03;
else bonus = 0;
%end;
gmend app;
%app (10000)
proc print;
run;

In this example, the macro definition is compiled and stored successfully (see the
following figure). For the sake of illustration, the compiled APP macro looks like the
original macro definition that was in the input stack. The entry would actually contain
compiled macro instructions with constant text. The constant text in this example is

underlined.

Figure 4.3 The Compiled Macro APP

(Compiler

r Word Scanner \

N

\
J

Macro Catalog

APP Macro

%macro app (goal);
$ifksysday=Friday %then
%do;
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
%end;
%mend app;

Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

%app (10000)
proc print;
run;

36 How the Macro Processor Executes a Compiled Macro A Chapter 4

How the Macro Processor Executes a Compiled Macro

Macro execution begins with the macro processor opening the SASMACR catalog to
read the appropriate macro entry. As the macro processor executes the compiled
instructions in the macro entry, it performs a series of simple repetitive actions. During
macro execution, the macro processor

O executes compiled macro program instructions
O places noncompiled constant text on the input stack
0 waits for the word scanner to process the generated text

O resumes executing compiled macro program instructions.

To continue the example from the previous section, the following figure shows the
lines remaining in the input stack after the macro processor compiles the macro
definition APP.

Figure 4.4 The Macro Call in the Input Stack

Input Stack

%app (10000)
proc print;
run;

The word scanner examines the input stack and detects % followed by a nonblank
character in the first token. It triggers the macro processor to examine the token.

Figure 4.5 Macro Call Entering Word Queue

(Compiler \ (Word Scanner \ Symbol Table

K J SYSDAY Friday

Macro Catalog

APP Macro

Macro Processor
%macro app(goal);

%if &sysday=Friday %then

e Input Stack
data thisweek;
data thisweex; a 10000
set lastweek; (r%(rint)-
Af totsales > &goal s
_then bonus = .03; '
else bonus = 0;

%end;
smend app;

Macro Processing /A How the Macro Processor Executes a Compiled Macro 37

The macro processor recognizes a macro call and begins to execute macro APP, as
follows:

1 The macro processor opens the session catalog and creates a local symbol table
with an entry for the parameter GOAL.

2 The macro processor removes the tokens for the macro call from the input stack
and places the parameter value in the GOAL entry in the APP symbol table.

3 The macro processor encounters the compiled %IF instruction and recognizes that
the next item will be text containing a condition.

4 The macro processor places the text ssysday=Friday on the input stack ahead of
the remaining text in the program (see the following figure) and waits for the word
scanner to tokenize the generated text.

Figure 4.6 Text for %IF Condition on Input Stack

(Compiler \ (Word Scanner \ Symbol Table
K J SYSDAY Friday

APP Symbol Table
GOAL 10000

Macro Catalog

APP Macro

»(Macro Processor)

%1% &sysday=Friday)%then

3307 . Input/ Stack
dal:a_thj_sme1 e]fa;k; &sysdayfFrid.ﬁ?
if totsales > &goal gig? print;
then bonus = 03; !
else bonus = 0;
%end;

smend app;

5 The word scanner starts tokenizing the generated text, recognizes an ampersand
followed by nonblank character in the first token, and triggers the macro processor.

6 The macro processor examines the token and finds a possible macro variable
reference, &SYSDAY. The macro processor first searches the local APP symbol
table for a matching entry and then the global symbol table. When the macro
processor finds the entry in the global symbol table, it replaces macro variable in
the input stack with the value Friday (see the following figure).

7 The macro processor stops and waits for the word scanner to tokenize the
generated text.

38

How the Macro Processor Executes a Compiled Macro A Chapter 4

Figure 4.7 Input Stack after Macro Variable Reference Is Resolved

(Compiler \ (Word Scanner \ Symbol Table

C) ST _Frign
T
APP Symbol Table

GOAL 10000

Macro Catalog 7y
APP Macro
Macro Processor
%macro app(goal);
%if &sysday=Friday %then
%do; Input Stack
data thisweek; : .
set lastweek; [Fridayi=Friday
if totsales > &goal proc print;
then bonus = .03; run;
else bonus = 0;
%end;
%mend app;

8 The word scanner then read Friday=Friday from the input stack.

9 The macro processor evaluates the expression Friday=Friday and, because the
expression is true, proceeds to the %THEN and %DO instructions.

Figure 4.8 Macro Processor Receives the Condition

(Compiler \ r Word Scanner w Symbol Table
k J @ SYSDAY Friday

Friday APP Symbol Table
GOAL 10000

Macro Catalog

APP Macro

%macro app(goal);

$if&sysday=Friday %then
%do; Input Stack
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
%end;
gmend app;

7'y

proc print;
run;

10 The macro processor executes the compiled %DO instructions and recognizes that
the next item is text.

11 The macro processor places the text on top of the input stack and waits for the
word scanner to begin tokenization.

12 The word scanner reads the generated text from the input stack, and tokenizes it.

Macro Processing /A How the Macro Processor Executes a Compiled Macro 39

13 The word scanner recognizes the beginning of a DATA step, and triggers the
compiler to begin accepting tokens. The word scanner transfers tokens to the

compiler from the top of the stack.

Figure 4.9 Generated Text on Top of Input Stack

(Compiler

Symbol Table

(Word Scanner \

LDATA

\
j‘* thisweek

Macro Catalog

APP Macro

%macro app (goal);
$if &sysday=Friday %then
%do;
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
%end
smend app;

SYSDAY Friday

set APP Symbol Table
lastueek GOAL 10000
U

A

»(Macro Processor)

Input Stack

if totsales &goal

then bonus = 03;
else bonus = 0;
proc print;

run;

14 When the word scanner detects & followed by a nonblank character (the macro
variable reference & GOAL), it triggers the macro processor.

15 The macro processor looks in the local APP symbol table and resolves the macro
variable reference & GOAL to 10000. The macro processor places the value on top
of the input stack, ahead of the remaining text in the program.

Figure 4.10 The Word Scanner Reads Generated Text

/ Compiler

N

DATA THISWEEK;
SET LASTWEEK;

J

Macro Catalog

APP Macro

%macro app (goal);
$1f &sysday=Friday %then
%do;
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
send;
gmend app;

("~ Vord Scanner) Symbol Table
if SYSDAY Friday
totsales
> APP Symbol Table

GOAL 10000

K A 'Y

Input Stack
10000;
then bonus = .03;
else bonus = 0;
proc print;
run;

40

Summary of Macro Processing /A Chapter 4

16 The word scanner resumes tokenization. When it has completed tokenizing the
generated text, it triggers the macro processor.

17 The macro processor resumes processing the compiled macro instructions. It
recognizes the end of the %DO group at the %END instruction and proceeds to
%MEND.

18 the macro processor executes the 2#MEND instruction, removes the local symbol
table APP, and macro APP ceases execution.

19 The macro processor triggers the word scanner to resume tokenization.

20 The word scanner reads the first token in the input stack (PROC), recognizes the
beginning of a step boundary, and triggers the DATA step compiler.

21 The compiled DATA step is executed, and the DATA step compiler is cleared.

22 The word scanner signals the PRINT procedure (a separate executable not
illustrated), which pulls the remaining tokens.

Figure 4.11 The Remaining Statements are Compiled and Executed

Compiler (f Word Scanner \\ Symbol Table
DATA THISWEEK ; proc SYSDAY Friday
SET LASTWEEK;
IF TOTSALES > 10000
THEN BONUS = .03 APP Symbol Table
\ ELSE BONUS = 0 ; / GOAL 10000

APP Macro

%macro app(goal) ; Input Stack

%if &sysday=Friday %then print;
%do; run;
data thisweek;
set lastweek;
if totsales > &goal
then bonus = .03;
else bonus = 0;
%end;
mend app;

Summary of Macro Processing

The previous sections illustrate the relationship between macro compilation and
execution and DATA step compilation and execution. The relationship contains a
pattern of simple repetitive actions. These actions begin when text is submitted to the
input stack and the word scanner begins tokenization. At times the word scanner waits
for the macro processor to perform an activity, such as searching the symbol tables or
compiling a macro definition. If the macro processor generates text during its activity,
then it pauses while the word scanner tokenizes the text and sends the tokens to the
appropriate target. These tokens might trigger other actions in parts of SAS, such as
the DATA step compiler, the command processor, or a SAS procedure. If this is the case,
the macro processor waits for these actions to be completed before resuming its activity.
When the macro processor stops, the word scanner resumes tokenization. This process
continues until the entire program has been processed.

4

CHAPTER

Scopes of Macro Variables

Introduction to the Scopes of Macro Variables M
Global Macro Variables 42
Local Macro Variables 43
Writing the Contents of Symbol Tables to the SAS Log 45
How Macro Variables Are Assigned and Resolved 45
Examples of Macro Variable Scopes 48
Changing the Values of Existing Macro Variables 48
Creating Local Variables 50
Forcing a Macro Variable to Be Local 54
Creating Global Macro Variables 57
Creating Global Variables Based on the Value of Local Variables 58
Special Cases of Scope with the CALL SYMPUT Routine 58
Example Using CALL SYMPUT with Complete DATA Step and a Nonempty Local Symbol
Table 59
Example Using CALL SYMPUT with an Incomplete DATA Step 62
Example Using CALL SYMPUT with a Complete DATA Step and an Empty Local Symbol
Table 64
Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbol Table 64

Introduction to the Scopes of Macro Variables

Every macro variable has a scope.* A macro variable’s scope determines how it is
assigned values and how the macro processor resolves references to it.

Two types of scopes exist for macro variables: global and local. Global macro
variables exist for the duration of the SAS session and can be referenced anywhere in
the program—either inside or outside a macro. Local macro variables exist only during
the execution of the macro in which the variables are created and have no meaning
outside the defining macro.

Scopes can be nested, like boxes within boxes. For example, suppose you have a
macro A that creates the macro variable LOC1 and a macro B that creates the macro
variable LOC2. If the macro B is nested (executed) within the macro A, LOC1 is local to
both A and B. However, LOC2 is local only to B.

Macro variables are stored in symbol tables, which list the macro variable name and
its value. There is a global symbol table, which stores all global macro variables. Local
macro variables are stored in a local symbol table that is created at the beginning of the
execution of a macro.

* Earlier macro facility documentation often used the term "referencing environment" instead of scope.

42 Global Macro Variables A Chapter 5

You can use the %SYMEXIST function to indicate whether or not a macro variable
exists. See “DSYMEXIST Function” on page 248 for more detailed information.

Global Macro Variables

The following figure illustrates the global symbol table during execution of the
following program:

$let county=Clark;

gmacro concat;
data _null ;
length longname $20;
longname="&county"||" County";
put longname;
run;
gmend concat;

gconcat

Calling the macro CONCAT produces the following statements:

data null ;
length longname $20;
longname="Clark"||" County";
put longname;

run;
The PUT statement writes the following to the SAS log:

Clark County

Figure 5.1 Global Symbol Table

GLOBAL SYSDATE — 05FEB97
SYSDAY - Wednesday

COUNTY —» Clark

Global macro variables include the following:

Scopes of Macro Variables /\ Local Macro Variables 43

o all automatic macro variables except SYSPBUFF. See Chapter 13, “Macro
Language Dictionary,” on page 163 for more information on SYSPBUFF and other
automatic macro variables.

O macro variables created outside of any macro.

0O macro variables created in %GLOBAL statements. See “Creating Global Macro
Variables” on page 57 for more information on the %GLOBAL statement.

0O most macro variables created by the CALL SYMPUT routine. See “Special Cases
of Scope with the CALL SYMPUT Routine” on page 58 for more information on the
CALL SYMPUT routine.

You can create global macro variables any time during a SAS session or job. Except
for some automatic macro variables, you can change the values of global macro
variables any time during a SAS session or job.

In most cases, once you define a global macro variable, its value is available to you
anywhere in the SAS session or job and can be changed anywhere. So, a macro variable
referenced inside a macro definition is global if a global macro variable already exists
by the same name (assuming the variable is not explicitly defined as local with the
%LOCAL statement or in a parameter list). The new macro variable definition simply
updates the existing global one. The following are exceptions that prevent you from
referencing the value of a global macro variable:

0O when a macro variable exists both in the global symbol table and in the local
symbol table, you cannot reference the global value from within the macro that
contains the local macro variable. In this case, the macro processor finds the local
value first and uses it instead of the global value.

o if you create a macro variable in the DATA step with the SYMPUT routine, you
cannot reference the value with an ampersand until the program reaches a step
boundary. See Chapter 4, “Macro Processing,” on page 33 for more information on
macro processing and step boundaries.

You can use the %SYMGLOBL function to indicate whether or not an existing macro
variable resides in the global symbol table. See the “%SYMGLOBL Function” on page
254 for more detailed information.

Local Macro Variables

Local macro variables are defined within an individual macro. Each macro you
invoke creates its own local symbol table. Local macro variables exist only as long as a
particular macro executes. When the macro stops executing, all local macro variables
for that macro cease to exist.

The following figure illustrates the local symbol table during the execution of the
following program.

g$macro holinfo(day,date);

%let holiday=Christmas;

gput *** Inside macro: ***;

gput *** gholiday occurs on &day, &date, 2002. **x;
gmend holinfo;

$holinfo(Wednesday,12/25)

gput *** Outside macro: ***;
gput *** gholiday occurs on &day, &date, 2002. ***;

The %PUT statements write the following to the SAS log:

44 Local Macro Variables A Chapter 5

x Inside macro: ***
**%* Christmas occurs on Wednesday, 12/25, 2002. **x%

*** Qutside macro: ***

WARNING: Apparent symbolic reference HOLIDAY not resolved.
WARNING: Apparent symbolic reference DAY not resolved.
WARNING: Apparent symbolic reference DATE not resolved.
x% gholiday occurs on &day, &date, 2002. ***

As you can see from the log, the local macro variables DAY, DATE, and HOLIDAY
resolve inside the macro, but outside the macro they do not exist and therefore do not

resolve.

Figure 5.2 Local Symbol Table

HOLINFO DAY — Thursday
DATE —» 12/25
HOLIDAY —» Christmas

A macro’s local symbol table is empty until the macro creates at least one macro
variable. A local symbol table can be created by any of the following:

O the presence of one or more macro parameters

0 a %LOCAL statement

O macro statements that define macro variables, such as %LET and the iterative
%DO statement (assuming the variable does not already exist globally or a
%GLOBAL statement is not used).

Note: Macro parameters are always local to the macro that defines them. You
cannot make macro parameters global. (Although, you can assign the value of the
parameter to a global variable. See “Creating Global Variables Based on the Value of

Local Variables” on page 58.) Ao

When you invoke one macro inside another, you create nested scopes. Because you
can have any number of levels of nested macros, your programs can contain any

number of levels of nested scopes.
You can use the %SYMLOCAL function to indicate whether or not an existing macro
variable resides in an enclosing local symbol table. See the “%2SYMLOCAL Function” on

page 256 for more detailed information.

Scopes of Macro Variables /. How Macro Variables Are Assigned and Resolved 45

Writing the Contents of Symbol Tables to the SAS Log

While developing your macros, you might find it useful to write all or part of the
contents of the global and local symbol tables to the SAS log. To do so, use the %PUT
statement with one of the following options:

ALL describes all currently defined macro variables, regardless of scope.
This includes user-defined global and local variables as well as
automatic macro variables. Scopes are listed in the order of
innermost to outermost.

AUTOMATIC describes all automatic macro variables. The scope is listed as
AUTOMATIC. All automatic macro variables are global except
SYSPBUFF. See Chapter 12, “Macro Language Elements,” on page
147 and Chapter 13, “Macro Language Dictionary,” on page 163 for
more information about specific automatic macro variables.

GLOBAL describes all user-defined global macro variables. The scope is listed
as GLOBAL. Automatic macro variables are not listed.

LOCAL describes user-defined local macro variables defined within the
currently executing macro. The scope is listed as the name of the
macro in which the macro variable is defined.

USER describes all user-defined macro variables, regardless of scope. The
scope is either GLOBAL, for global macro variables, or the name of
the macro in which the macro variable is defined.

For example, consider the following program:

%let origin=North America;

gmacro dogs(type=);
data _null ;
set all dogs;
where dogtype="&type" and dogorig="&origin";
put breed " is for &type.";
run;

%put _user ;
¢mend dogs;

%dogs (type=work)

The %PUT statement preceding the %MEND statement writes to the SAS log the
scopes, names, and values of all user-generated macro variables:

DOGS TYPE work
GLOBAL ORIGIN North America

Because TYPE is a macro parameter, TYPE is local to the macro DOGS, with value
work. Because ORIGIN is defined in open code, it is global.

How Macro Variables Are Assigned and Resolved

Before the macro processor creates a variable, assigns a value to a variable, or
resolves a variable, it searches the symbol tables to determine whether the variable

46 How Macro Variables Are Assigned and Resolved A Chapter 5

already exists. The search begins with the most local scope and, if necessary, moves
outward to the global scope. The request to assign or resolve a variable comes from a
macro variable reference in open code (outside a macro) or within a macro.

The following figure illustrates the search order the macro processor uses when it
receives a macro variable reference that requests a variable be created or assigned. The
figure below illustrates the process for resolving macro variable references. Both these
figures represent the most basic type of search and do not apply in special cases, such
as when a %LOCAL statement is used or the variable is created by CALL SYMPUT.

Figure 5.3 Search Order When Assigning or Creating Macro Variables

Request to
create variable or
assign a variable value

From open code

Does variable exist in
global symbol table?

From within a macro

Does variable exist in
local symbol table?

YES NO YES NO
Change Create Change Does variable exist in
variable variable variable next available scope?
value in in value
global global in local
symbol symbol symbol YES NO
table table table
Change Continue checking
variable next available scope
value

Does variable exist in
global symbol table?

YES NO

Change Create

variable || variable
value in local

in global || symbol

symbol table
table

Scopes of Macro Variables

Figure 5.4 Search Order When Resolving Macro Variable References

Request to
resolve variable

From open code

Does variable exist in
global symbol table?

YES NO
Resolve Issue
variable warning

message

From within a macro

Does variable exist in
local symbol table?

A How Macro Variables Are Assigned and Resolved

YES NO
Resolve Does variable exist in
variable next available scope?
YES NO
Resolve Continue checking
variable next available scope

Does variable exist in
global symbol table?

YES NO

Resolve Issue

variable warning
message

LY

48 Examples of Macro Variable Scopes A Chapter 5

Examples of Macro Variable Scopes

Changing the Values of Existing Macro Variables

When the macro processor executes a macro program statement that can create a
macro variable (such as a %LET statement), the macro processor attempts to change
the value of an existing macro variable rather than create a new macro variable. The
%GLOBAL and %LOCAL statements are exceptions.

To illustrate, consider the following %LET statements. Both statements assign
values to the macro variable NEW:

%let new=inventry;
gmacro namel;

%let new=report;
gmend namel;

Suppose you submit the following statements:

gnamel

data &new;

These statements produce the following statement:

data report;

Because NEW exists as a global variable, the macro processor changes the value of
that variable rather than creating a new one. The macro NAME1’s local symbol table
remains empty.

The following figure illustrates the contents of the global and local symbol tables
before, during, and after NAME1’s execution.

Scopes of Macro Variables /. Changing the Values of Existing Macro Variables

Figure 5.5 Snapshots of Symbol Tables

49

SYSDATE — 15AUG97
SYSDAY - Friday

NEW N inventry

SYSDATE —» 15AUG97
SYSDAY — Friday

NEW — report

Before NAME1 executes
GLOBAL
While NAME1 t
ile executes GLOBAL
NAME1
After NAME] executes
GLOBAL

SYSDATE — 15AUG97
SYSDAY —» Friday

NEW —» report

50 Creating Local Variables A Chapter 5

Creating Local Variables

When the macro processor executes a macro program statement that can create a
macro variable, the macro processor creates the variable in the local symbol table if no
macro variable with the same name is available to it. Consider the following example:

%let new=inventry;
gmacro name2;
$let new=report;
%let old=warehse;
gmend name2;

gname2

data &new;
set &old;

run;
After NAME2 executes, the SAS compiler sees the following statements:

data report;
set &old;

run;

The macro processor encounters the reference &OLD after macro NAME2 has
finished executing; thus, the macro variable OLD no longer exists. The macro processor
is not able to resolve the reference and issues a warning message.

The following figure illustrates the contents of the global and local symbol tables at
various stages.

Scopes of Macro Variables /. Creating Local Variables

Figure 5.6 Symbol Tables at Various Stages

Before NAME2 executes

While NAME2 executes

After NAME2 executes

51

GLOBAL SYSDATE — 15AUG97
SYSDAY —» Friday
NEW N inventry
GLOBAL SYSDATE — 15AUG97
SYSDAY —» Friday
NEW —» report
NAME2 OLD —» warehse
GLOBAL SYSDATE — 15AUG97

SYSDAY - Friday

NEW —» report

52 Creating Local Variables A Chapter 5

But suppose you place the SAS statements inside the macro NAMEZ2, as in the
following program:

%let new=inventry;
gmacro name?2;
%let new=report;
%let old=warehse;
data &new;
set &old;
run;
gmend name2;

gname2

In this case, the macro processor generates the SET statement during the execution
of NAMEZ2, and it locates OLD in NAMEZ2’s local symbol table. Therefore, executing the
macro produces the following statements:

data report;
set warehse;

run;
The same rule applies regardless of how many levels of nesting exist. Consider the
following example:

$let new=inventry;
gmacro conditn;
¢let old=sales;
%let cond=cases>0;

gmend conditn;

gmacro name3;
$let new=report;
¢let old=warehse;
$conditn
data &new;
set &old;
if &cond;
run;
gmend name3;

gname3

The macro processor generates these statements:

data report;
set sales;
if &cond;

run;

CONDITN finishes executing before the macro processor reaches the reference
&COND, so no variable named COND exists when the macro processor attempts to
resolve the reference. Thus, the macro processor issues a warning message and
generates the unresolved reference as part of the constant text and issues a warning
message. The following figure shows the symbol tables at each step.

Scopes of Macro Variables /. Creating Local Variables

Figure 5.7 Symbol Tables Showing Two Levels of Nesting

Early execution of
NAMES. before GLOBAL SYSDATE — 15AUG97

CONDITN executes SYSDAY _' Friday
NEW — report

NAME3 OLD — warehse

While NAMES and
CONDITN execute GLOBAL SYSDATE —» 15AUG97

SYSDAY — Friday

NEW —» report

NAME3 OLD — sales

CONDITN COND = cases>0

Late execution of
NAMES3, after GLOBAL SYSDATE —» 15AUG97

CONDITN executes SYSDAY _' Friday
NEW — report

NAME3 OLD —» sales

Notice that the placement of a macro invocation is what creates a nested scope, not
the placement of the macro definition. For example, invoking CONDITN from within

54

Forcing a Macro Variable to Be Local A Chapter 5

NAMES creates the nested scope. It is not necessary to define CONDITN within
NAMES3S.

Forcing a Macro Variable to Be Local

At times you need to ensure that the macro processor creates a local macro variable
rather than changing the value of an existing macro variable. In this case, use the
%LOCAL statement to create the macro variable.

Explicitly make all macro variables created within macros local when you do not
need their values after the macro stops executing. Debugging the large macro programs
is easier if you minimize the possibility of inadvertently changing a macro variable’s
value. Also, local macro variables do not exist after their defining macro finishes
executing, while global variables exist for the duration of the SAS session. Therefore,
local variables use less overall storage.

Suppose you want to use the macro NAMELST to create a list of names for a VAR
statement, as shown here:

gmacro namelst (name,number);
g2do n=1 %$to &number;
&name&n
%end;
¢mend namelst;

You invoke NAMELST in this program:

%2let n=North State Industries;

proc print;

var %$namelst(dept,5);

title "Quarterly Report for &n";
run;

After macro execution, the SAS compiler sees the following statements:

proc print;
var deptl dept2 dept3 dept4 dept5;
title "Quarterly Report for 6";
run;

Scopes of Macro Variables /\ Forcing a Macro Variable to Be Local 55

The macro processor changes the value of the global variable N each time it executes
the iterative %DO loop. (After the loop stops executing, the value of N is 6, as described
in " %DO" in Chapter 13, “Macro Language Dictionary,” on page 163.) To prevent
conflicts, use a %LOCAL statement to create a local variable N, as shown here:

gmacro namels2 (name,number) ;
%$local n;
%2do n=1 %to &number;
&name&n
%end;
¢mend namels2;

Now execute the same program:

¢let n=North State Industries;

proc print;
var %$namels2(dept,5);
title "Quarterly Report for &n";

run;
The macro processor generates the following statements:

proc print;
var deptl dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";

run;
The following figure shows the symbol tables before NAMELS2 executes, while

NAMELS2 is executing, and when the macro processor encounters the reference &N in
the TITLE statement.

56 Forcing a Macro Variable to Be Local A Chapter 5

Figure 5.8 Symbol Tables for Global and Local Variables with the Same Name

Before NAMELS2 executes

While NAMELS2 executes
(at end of last iteration
of %DO loop)

After NAMELS2 executes

GLOBAL

SYSDATE — 15AUG97
SYSDAY - Friday

N — North Stai:e Industries

GLOBAL

SYSDATE — 15AUG97
SYSDAY — Friday

N — North Sta;ce Industries

NAMELS2

NAME —» dept
NUMBER — 5
N-—>6

GLOBAL

SYSDATE — 15AUG97
SYSDAY — Friday

N — North Sta;ce Industries

Scopes of Macro Variables /A Creating Global Macro Variables 57

Creating Global Macro Variables

The %GLOBAL statement creates a global macro variable if a variable with the same
name does not already exist there, regardless of what scope is current.

For example, in the following program, the macro CONDITN contains a %GLOBAL
statement that creates the macro variable COND as a global variable:

gmacro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;
¢mend conditn;

Here is the rest of the program:

$let new=inventry;

gmacro nameé4;
%$let new=report;
%let old=warehse;
%conditn
data &new;
set &old;
if &cond;
run;

gmend named;

$name4
Invoking NAME4 generates these statements:

data report;
set sales;
if cases>0;

run;

Suppose you want to put the SAS DATA step statements outside NAME4. In this
case, all the macro variables must be global for the macro processor to resolve the
references. You cannot add OLD to the %GLOBAL statement in CONDITN because the
%LET statement in NAME4 has already created OLD as a local variable to NAME4 by
the time CONDITN begins to execute. (You cannot use the %GLOBAL statement to
make an existing local variable global.)

Thus, to make OLD global, use the %GLOBAL statement before the variable
reference appears anywhere else, as shown here in the macro NAMES5:

$let new=inventry;

g¢macro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;
gmend conditn;

fmacro name5;
%global old;
%let new=report;
%let old=warehse;

58 Creating Global Variables Based on the Value of Local Variables A Chapter 5

gconditn
gmend nameb5;

gnameb5

data &new;
set &old;
if &cond;

run;

Now the %LET statement in NAMES5 changes the value of the existing global
variable OLD rather than creating OLD as a local variable. The SAS compiler sees the
following statements:

data report;
set sales;
if cases>0;
run;

Creating Global Variables Based on the Value of Local Variables

To use a local variable such as a parameter outside a macro, use a %LET statement
to assign the value to a global variable with a different name, as in this program:

gmacro namels3(name,number);
%local n;
%global g_number;
%$let g _number=&number;
%do n=1 %to &number;

&name&n

gend;

gmend namels3;

Now invoke the macro NAMELSS in the following the program:

%let n=North State Industries;

proc print;
var %$namels3(dept,5);
title "Quarterly Report for &n";
footnote "Survey of &g number Departments";

run;
The compiler sees the following statements:

proc print;
var deptl dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";
footnote "Survey of 5 Departments";

run;

Special Cases of Scope with the CALL SYMPUT Routine

Most problems with CALL SYMPUT involve the lack of an explicit step boundary
between the CALL SYMPUT statement that creates the macro variable and the macro
variable reference that uses that variable. (See Chapter 13, “Macro Language
Dictionary,” on page 163 for details about CALL SYMPUT.) However, a few special

Scopes of Macro Variables /. Special Cases of Scope with the CALL SYMPUT Routine 59

cases exist that involve the scope of a macro variable created by CALL SYMPUT. These
cases are good examples of why you should always assign a scope to a variable before
assigning a value rather than relying on SAS to do it for you.

Two rules control where CALL SYMPUT creates its variables:

1 CALL SYMPUT creates the macro variable in the current symbol table available
while the DATA step is executing, provided that symbol table is not empty. If it is
empty (contains no local macro variables), usually CALL SYMPUT creates the
variable in the closest nonempty symbol table.

2 However, there are three cases where CALL SYMPUT creates the variable in the
local symbol table, even if that symbol table is empty:

0 Beginning with SAS Version 8, if CALL SYMPUT is used after a PROC SQL,
the variable will be created in a local symbol table.

o If the macro variable SYSPBUFF is created at macro invocation time, the
variable will be created in the local symbol table.

o If the executing macro contains a computed %GOTO statement, the variable
will be created in the local symbol table. A computed %GOTO statement is
one that uses a label that contains an & or a % in it. That is, a computed
%GOTO statement contains a macro variable reference or a macro call that
produces a text expression. Here is an example of a computed %2GOTO
statement:

$goto &home;

The symbol table that is currently available to a DATA step is the one that exists
when SAS determines that the step is complete. (SAS considers a DATA step to be
complete when it encounters a RUN statement, a semicolon after data lines, or the
beginning of another step).

In simplest terms, if an executing macro contains a computed %GOTO statement, or
if the macro variable SYSPBUFTF is created at macro invocation time, but the local
symbol table is empty, CALL SYMPUT behaves as though the local symbol table was
not empty, and creates a local macro variable.

You might find it helpful to use the %PUT statement with the _USER_ option to
determine what symbol table the CALL SYMPUT routine has created the variable in.

Example Using CALL SYMPUT with Complete DATA Step and a Nonempty
Local Symbol Table

Consider the following example, which contains a complete DATA step with a CALL
SYMPUT statement inside a macro:

gmacro envl(paraml);
data _null ;
X = 'a token’;
call symput(’'myvarl’,x);
run;

gmend envl;

%envl1(10)
data temp;

y = "&myvarl";
run;

When you submit these statements, you receive an error message:

WARNING: Apparent symbolic reference MYVAR1 not resolved.

60

Special Cases of Scope with the CALL SYMPUT Routine A Chapter 5

This message appears because the DATA step is complete within the environment of
ENV1 (that is, the RUN statement is within the macro) and because the local symbol
table of ENV1 is not empty (it contains parameter PARAM1). Therefore, the CALL
SYMPUT routine creates MYVAR] as a local variable for ENV1, and the value is not
available to the subsequent DATA step, which expects a global macro variable.

To see the scopes, add a %PUT statement with the _USER_ option to the macro, and
a similar statement in open code. Now invoke the macro as before:

gmacro envl(paraml);
data _null ;
X = 'a token’;
call symput(’'myvarl’,bx);

run;
$put ** Inside the macro: **;
%put _user_;

gmend envl;

%envl1(10)

gput ** In open code: **;

gput _user ;

data temp;
y = "&myvarl"; /* ERROR - MYVAR1l is not available in open code. */

run;

When the %PUT _USER_ statements execute, they write the following information to
the SAS log:

** Inside the macro: **

ENV1 MYVARI1 a token

ENV1 PARAM1 10

** In open code: **

The MYVAR1 macro variable is created by CALL SYMPUT in the local ENV1 symbol
table. The %PUT _USER_ statement in open code writes nothing to the SAS log,
because no global macro variables are created.

The following figure shows all of the symbol tables in this example.

Scopes of Macro Variables /. Special Cases of Scope with the CALL SYMPUT Routine

Figure 5.9 The Symbol Tables with the CALL SYMPUT Routine Generating a

Complete DATA Step

Before ENV1 executes

While ENV1 executes

After ENV1 executes

61

GLOBAL SYSDATE — 15AUG97
SYSDAY - Friday
GLOBAL SYSDATE —» 15AUG97
SYSDAY — Friday
ENV1 PARAM1 — 10
MYVAR1 —» a token
GLOBAL SYSDATE — 15AUG97

SYSDAY —» Friday

62 Special Cases of Scope with the CALL SYMPUT Routine A Chapter 5

Example Using CALL SYMPUT with an Incomplete DATA Step

In the macro ENV2, shown here, the DATA step is not complete within the macro
because there is no RUN statement:

gmacro env2(param?2);
data _null ;
X = 'a token’;
call symput(’'myvar2’,x);
gmend env2;

%env2(20)

run;

data temp;
y="&myvar2";

run;

These statements execute without errors. The DATA step is complete only when SAS
encounters the RUN statement (in this case, in open code). Thus, the current scope of
the DATA step is the global scope. CALL SYMPUT creates MYVAR2 as a global macro
variable, and the value is available to the subsequent DATA step.

Again, use the %PUT statement with the _USER_ option to illustrate the scopes:

gmacro env2(param2);
data _null ;
X = 'a token’;
call symput(’'myvar2’,x);

$put ** Inside the macro: **;
gput _user ;
gmend env2;

%env2(20)
run;

gput ** In open code: **;
%put _user_;

data temp;
y="&myvar2";

run;

When the %PUT _USER_ statement within ENV2 executes, it writes the following to
the SAS log:

** Inside the macro: **
ENV2 PARAM2 20

The %PUT _USER_ statement in open code writes the following to the SAS log:

** In open code: **
GLOBAL MYVAR2 a token

The following figure shows all the scopes in this example.

Scopes of Macro Variables /. Special Cases of Scope with the CALL SYMPUT Routine

Figure 5.10 The Symbol Tables with the CALL SYMPUT Routine Generating an

Incomplete DATA Step

Before ENV2 executes

While ENV2 executes

After ENV2 executes

63

GLOBAL SYSDATE — 15AUG97
SYSDAY - Friday
GLOBAL SYSDATE —» 15AUG97
SYSDAY — Friday
ENV2 PARAM2 — 20
GLOBAL SYSDATE — 15AUG97

SYSDAY —» Friday

MYVAR2 —» a token

64

Special Cases of Scope with the CALL SYMPUT Routine A Chapter 5

Example Using CALL SYMPUT with a Complete DATA Step and an Empty
Local Symbol Table

In the following example, ENV3 does not use macro parameters. Therefore, its local
symbol table is empty:

gmacro env3;
data _null ;
X = 'a token’;
call symput(’'myvar3’,x);

run;

gput ** Inside the macro: **;
%put _user_;

¢mend env3;
%env3

gput ** In open code: **;
%put _user_;

data temp;
y="&myvar3";

run;

In this case, the DATA step is complete and executes within the macro, but the local
symbol table is empty. So, CALL SYMPUT creates MYVARS3 in the closest available
nonempty symbol table—the global symbol table. Both %PUT statements show that
MYVARS exists in the global symbol table:

** Inside the macro: **
GLOBAL MYVAR3 a token

** In open code: **
GLOBAL MYVAR3 a token

Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbhol
Tahle

In the following example, the presence of the SYSPBUFF automatic macro variable
causes CALL SYMPUT to behave as though the local symbol table were not empty,
even though the macro ENV4 has no parameters or local macro variables:

gmacro env4 /parmbuff;
data _null ;
X = 'a token’;
call symput(’'myvar4’,x);

run;
gput ** Inside the macro: **;
gput _user ;
gput &syspbuff;

gmend env4;

%envi

gput ** In open code: **;

Scopes of Macro Variables /. Special Cases of Scope with the CALL SYMPUT Routine 65

gput _user ;
gput &syspbuff;

data temp;
y="&myvar4"; /* ERROR - MYVAR4 is not available in open code */

run;

The presence of the /PARMBUFF specification causes the SYSPBUFF automatic
macro variable to be created. So, when you call macro ENV4, CALL SYMPUT creates
the macro variable MYVAR4 in the local symbol table (that is, in ENV4’s), even though
the macro ENV4 has no parameters and no local variables.

The results of the %PUT statements prove this—the score of MYVAR4 is listed as
ENV4, and the reference to SYSPBUFF does not resolve in the open code %PUT
statement because SYSPBUFF is local to ENV4:

% Inside the macro: **
ENV4 MYVAR4 a token

** Tn open code: **
WARNING: Apparent symbolic reference SYSPBUFF not resolved.

For more information about SYSPBUFF, see Chapter 13, “Macro Language
Dictionary,” on page 163.

66

67

CHAPTER

Macro Expressions

Introduction to Macro Expressions 67

Defining Arithmetic and Logical Expressions 68
Operands and Operators 68

How the Macro Processor Evaluates Arithmetic Expressions 70
Evaluating Numeric Operands 10
Evaluating Floating Point Operands 10

How the Macro Processor Evaluates Logical Expressions 71
Comparing Numeric Operands in Logical Expressions T1

Comparing Floating Point or Missing Values 12

Comparing Character Operands in Logical Expressions 12

Introduction to Macro Expressions

There are three types of macro expressions: text, logical, and arithmetic. A text
expression is any combination of text, macro variables, macro functions, or macro calls.
Text expressions are resolved to generate text. Here are some examples of text
expressions:

o &BEGIN

o %GETLINE

o &PREFIX.PART&SUFFIX
o %UPCASE(&ANSWER)

Logical expressions and arithmetic expressions are sequences of operators and
operands forming sets of instructions that are evaluated to produce a result. An
arithmetic expression contains an arithmetic operator. A logical expression contains a
logical operator. The following table show examples of simple arithmetic and logical

expressions:

Arithmetic Expressions Logical expressions
1+2 &DAY = FRIDAY
4*3 A<a

4/2 1 < &INDEX

00FFx - 003Ax &START NE &END

68

Defining Arithmetic and Logical Expressions A Chapter 6

Defining Arithmetic and Logical Expressions

You can use arithmetic and logical expressions in specific macro functions and
statements (see the following table). The arithmetic and logical expressions in these
functions and statements enable you to control the text generated by a macro when it is
executed.

Table 6.1 Macro Language Elements that Evaluate Arithmetic and Logical
Expressions

%DOmacro-variable=expression %TO expression<%BY expression>;
%DO %UNTIL(expression);

%D0O %WHILE(expression);

%EVAL (expression),

%IF expression %THEN statement,;
%QSCAN(argument,expression<,delimiters>)
%QSUBSTR(argument,expression< ,expression>)
%SCAN(argument,expression,<delimiters>)
%SUBSTR(argument,expression< ,expression>)

%SYSEVALF (expression,conversion-type)

You can use text expressions to generate partial or complete arithmetic or logical
expressions. The macro processor resolves text expressions before it evaluates the
arithmetic or logical expressions. For example, when you submit the following
statements, the macro processor resolves the macro variables &A, &B, and
&OPERATOR in the %EVAL function, before it evaluates the expression 2 + 5:

glet A=2;

%let B=5;

$let operator=+;

$put The result of &A &operator &B is %eval(&A &operator &B).;

When you submit these statements, the %PUT statement writes this line to the log:

The result of 2 + 5 is 7.

Operands and Operators

Operands in arithmetic or logical expressions are always text. However, an operand
that represents a number can be temporarily converted to a numeric value when an
expression is evaluated. By default, the macro processor uses integer arithmetic, and
only integers and hexadecimal values that represent integers can be converted to a
numeric value. Operands that contain a period character, for example 1.0, are not
converted. The exception is the %#SYSEVALF function, which interprets a period
character in its argument as a decimal point and converts the operand to a floating
point value on your operating system.

Note: The values of numeric expressions are restricted to the range of —2%*64 to
2¥%64—1. A

Macro Expressions /\ Qperands and Operators 69

Operators in macro expressions are a subset of those in the DATA step (Table 6.2 on
page 69). However, in the macro language, there is no MAX or MIN operator, and it
does not recognize "’, as does the DATA step. The order in which operations are
performed when an expression is evaluated is the same in the macro language as in the
DATA step. Operations within parentheses are performed first.

Note: Expressions in which comparison operators surround a macro expression, as
in 10<&X<20, might or might not be the equivalent of a DATA step compound
expression (depending on what the expression resolves to). To be safe, write the
connecting operator explicitly, as in the expression 10<&X AND &X<20. A

Table 6.2 Macro Language Operators

Operator Mnemonic Precedence Definition Example

wE 1 exponentiation — 2%¥4

+ 2 positive prefix +(A+B)

- 2 negative prefix -(A+B)

N~ NOT 3 logical not* NOT A

* 4 multiplication A*B

/ 4 division A/B

+ 5 addition A+B

- 5 subtraction A-B

< LT 6 less than A<B

<= LE 6 less than or A<=B
equal

= EQ 6 equal A=B

IN 6 equal tooneof A#BCDE
a list™*

—= "= ~= NE 6 not equal* ANEB

> GT 6 greater than A>B

>= GE 6 greater than or A>=B
equal

& AND 7 logical and A=B & C=D

| OR 8 logical or A=B | C=D

*The symbol to use depends on your keyboard.

** List elements are delimited by blanks. See “MINDELIMITER= System Option” on page 212 for
more information.

CAUTION:
Integer expressions that contain exponential, multiplication, or division operators and that
use or compute values outside the range -9,007,199,254,740,992 to
9,007,199,254,740,992 might get inexact results.

70 How the Macro Processor Evaluates Arithmetic Expressions A Chapter 6

How the Macro Processor Evaluates Arithmetic Expressions

The macro facility is a string handling facility. However, in specific situations, the
macro processor can evaluate operands that represent numbers as numeric values.
When the macro processor evaluates an expression that contains an arithmetic operator
and operands that represent numbers, it temporarily converts the operands to numeric
values and performs the integer arithmetic operation. The result of the evaluation is
text.

Evaluating Numeric Operands

By default, arithmetic evaluation in most macro statements and functions is
performed with integer arithmetic. The exception is the %2SYSEVALF function. See
“Evaluating Floating Point Operands” on page 70 for more information. The following
macro statements illustrate integer arithmetic evaluation:

$let a=%eval(l+2);
%let b=%eval(10*3);
%let c=%eval(4/2);
%let i=%eval(5/3);

gput The value of a is &a;
gput The value of b is &b;
gput The value of c is &c;
$put The value of I is &i;

When you submit these statements, the following messages appear in the log:

The value of a is 3
The value of b is 30
The value of c is 2
The value of I is 1

Notice the result of the last statement. If you perform division on integers that
would ordinarily result in a fraction, integer arithmetic discards the fractional part.

When the macro processor evaluates an integer arithmetic expression that contains a
character operand, it generates an error. Only operands that contain characters that
represent integers or hexadecimal values are converted to numeric values. The
following statement shows an incorrect usage:

%$let d=%eval(10.0+20.0); /*INCORRECT*/

Because the %#EVAL function supports only integer arithmetic, the macro processor
does not convert a value containing a period character to a number, and the operands
are evaluated as character operands. This statement produces the following error
message:

ERROR: A character operand was found in the %EVAL function or S%IF
condition where a numeric operand is required. The condition was:
10.0+20.0

Evaluating Floating Point Operands

The %SYSEVALF function evaluates arithmetic expressions with operands that
represent floating point values. For example, the following expressions in the
%SYSEVALF function are evaluated using floating point arithmetic:

Macro Expressions /A GComparing Numeric Operands in Logical Expressions A

¢let a=%sysevalf(10.0*3.0);
%let b=%sysevalf(10.5+20.8);
¢let c=%sysevalf(5/3);

gput 10.0*3.0 = &aj;

$put 10.5+20.8 = &b;

gput 5/3 = &cj;

The %PUT statements display the following messages in the log:

10.0*3.0 = 30
10.5+20.8 = 31.3
5/3 = 1.6666666667

When the %SYSEVALF function evaluates arithmetic expressions, it temporarily
converts the operands that represent numbers to floating point values. The result of the
evaluation can represent a floating point value, but as in integer arithmetic
expressions, the result is always text.

The %SYSEVALF function provides conversion type specifications: BOOLEAN,
INTEGER, CEIL, and FLOOR. For example, the following %PUT statements return 1,
2, 3, and 2 respectively:

$let a=2.5;

$put %sysevalf(&a,boolean);
$put %sysevalf(&a,integer);
gput %sysevalf(&a,ceil);
gput %sysevalf(&a,floor);

These conversion types tailor the value returned by %SYSEVALF so that it can be
used in other macro expressions that require integer or Boolean values.

CAUTION:
Specify a conversion type for the %SYSEVALF function. If you use the %#SYSEVALF
function in macro expressions or assign its results to macro variables that are used
in other macro expressions, then errors or unexpected results might occur if the
%SYSEVALF function returns missing or floating point values. To prevent errors,
specify a conversion type that returns a value compatible with other macro
expressions. See “%SYSEVALF Function” on page 273 for more information on using
conversion types. A

How the Macro Processor Evaluates Logical Expressions

A logical, or Boolean, expression returns a value that is evaluated as true or false. In
the macro language, any numeric value other than 0 is true and a value of 0 is false.

Comparing Numeric Operands in Logical Expressions

When the macro processor evaluates logical expressions that contain operands that
represent numbers, it converts the characters temporarily to numeric values. To
illustrate how the macro processor evaluates logical expressions with numeric operands,
consider the following macro definition:

g$macro compnum(first,second);
$if &first>&second %$then %put &first is greater than &second;
%else %if &first=&second %then %put &first equals &second;

72 Comparing Character Operands in Logical Expressions A Chapter 6

%else %put &first is less than &second;
gmend compnum;

Invoking the COMPNUM macro with these values

gcompnum(1l,2)
gcompnum(-1,0)

displays these results in the log:

1 is less than 2
-1 is less than 0

The results show that the operands in the logical expressions were evaluated as
numeric values.

Comparing Floating Point or Missing Values

You must use the %SYSEVALF function to evaluate logical expressions containing
floating point or missing values. To illustrate comparisons with floating point and
missing values, consider the following macro that compares parameters passed to it
with the %SYSEVALF function and places the result in the log:

gmacro compflt(first,second);
$if %sysevalf(&first>&second) %then %put &first is greater than &second;
%else %if %$sysevalf(&first=&second) %then %put &first equals &second;
%else %put %$sysevalf(&first is less than &second);

gmend compflt;

Invoking the COMPFLT macro with these values

gcompflt (1.2,.9)
gcompflt (-.1,.)
$compflt (0,.)

places these values in the log:

1.2 is greater than .9
-.1 is greater than .
0 is greater than

The results show that the %#SYSEVALF function evaluated the floating point and
missing values.

Comparing Character Operands in Logical Expressions

To illustrate how the macro processor evaluates logical expressions, consider the
COMPC macro. Invoking the COMPC macro compares the values passed as parameters
and places the result in the log.

$macro compchar(first,second);
$if &first>&second %then %put &first comes after &second;
%else %put &first comes before &second;

gmend compchar;

Invoking the macro COMPCHAR with these values

gcompchar(a,b)
gcompchar(.,1)
gcompchar(Z,E)

Macro Expressions /\ Gomparing Character Operands in Logical Expressions 73

prints these results in the log:

a comes before b
. comes before 1
Z comes after E

When the macro processor evaluates expressions with character operands, it uses the
sort sequence of the host operating system for the comparison. The comparisons in
these examples work with both EBCDIC and ASCII sort sequences.

A special case of a character operand is an operand that looks numeric but contains a
period character. If you use an operand with a period character in an expression, both
operands are compared as character values. This can lead to unexpected results. So
that you can understand and better anticipate results, look at the following examples.

If you invoke the COMPNUM macro, shown earlier, with these values

¥compnum(10,2.0)
then these values are written to the log:
10 is less than 2.0

Because the %IF-THEN statement in the COMPNUM macro uses integer evaluation,
it does not convert the operands with decimal points to numeric values. The operands
are compared as character strings using the host sort sequence, which is the
comparison of characters with smallest-to-largest values. For example, lowercase letters
might have smaller values than uppercase, and uppercase letters might have smaller
values than digits.

CAUTION:
The host sort sequence determines comparison results. If you use a macro definition on
more than one operating system, comparison results might differ because the sort
sequence of one host operating system might differ from the other system. Refer to
“The SORT Procedure” in SAS Procedures Guide for more information on host sort
sequences. A

14

75

CHAPTER

Macro Quoting

Introduction to Macro Quoting 15

Understanding Why Macro Quoting Is Necessary 716

Overview of Macro Quoting Functions 7171

Passing Parameters That Contain Special Characters and Mnemonics 17
Deciding When to Use a Macro Quoting Function and Which Function to Use 18
Using the %STR and %NRSTR Functions 80

Using Unmatched Quotation Marks and Parentheses with %STR and %NRSTR 81

Using % Signs with %STR 81

Examples Using %STR 82

Examples Using %NRSTR 82
Using the %BQUOTE and %NRBQUOTE Functions 84

Examples Using %BQUOTE 84
Referring to Already Quoted Variables 85
Deciding How Much Text to Mask with a Macro Quoting Function 85
Using %SUPERQ@ 86

Examples Using %SUPER@ 86

Using the %SUPERQ Function to Prevent Warning Messages 86
Using the %SUPERQ Function to Enter Macro Keywords 87

Summary of Macro Quoting Functions and the Characters They Mask 88
Unquoting Text 89

Example of Unquoting 90

What to Do When Automatic Unquoting Does Not Work 91
How Macro Quoting Works 91
Other Functions That Perform Macro Quoting 92

Example Using the %QSCAN Function 93

Introduction to Macro Quoting

The macro language is a character-based language. Even variables that appear to be
numeric are generally treated as character variables (except during expression
evaluation). Therefore, the macro processor enables you to generate all sorts of special
characters as text. But because the macro language is composed of some of the same
special characters, an ambiguity often arises. The macro processor must know whether
to interpret a particular special character (for example, a semicolon or % sign) or a
mnemonic (for example, GE or AND) as text or as a symbol in the macro language.
Macro quoting functions resolve these ambiguities by masking the significance of
special characters so that the macro processor does not misinterpret them.

The following special characters and mnemonics might require masking when they
appear in text strings:

76

Understanding Why Macro Quoting Is Necessary A Chapter 7

blank) = LT
; (| GE
- + AND GT
A — OR IN
~ * NOT %

, (comma) / EQ &

’ < NE #
“ > LE

Understanding Why Macro Quoting Is Necessary

Macro quoting functions tell the macro processor to interpret special characters and
mnemonics as text rather than as part of the macro language. If you did not use a
macro quoting function to mask the special characters, the macro processor or the rest
of SAS might give the character a meaning you did not intend. Here are some examples
of the kinds of ambiguities that can arise when text strings contain special characters
and mnemonics:

0 Is $sign a call to the macro SIGN or a phrase “percent sign”?
0 Is OR the mnemonic Boolean operator or the abbreviation for Oregon?

0 Is the quote in O’Malley an unbalanced single quotation mark or just part of the
name?

o0 Is Boys&Girls a reference to the macro variable &GIRLS or a group of children?
0 Is GE the mnemonic for “greater than or equal” or is it short for General Electric?
0 Which statement does a semicolon end?

o0 Does a comma separate parameters, or is it part of the value of one of the
parameters?

Macro quoting functions enable you to clearly indicate to the macro processor how it
is to interpret special characters and mnemonics.

Here is an example, using the simplest macro quoting function, %STR. Suppose you
want to assign a PROC PRINT statement and a RUN statement to the macro variable
PRINT. Here is the erroneous statement:

%let print=proc print; run;; /* ERROR */

This code is ambiguous. Are the semicolons that follow PRINT and RUN part of the
value of the macro variable PRINT, or does one of them end the %#LET statement? If
you do not tell the macro processor what to do, it interprets the semicolon after PRINT
as the end of the %ZLET statement. So the value of the PRINT macro variable would be

proc print

The rest of the characters (RUN;;) would be simply the next part of the program.
To avoid the ambiguity and correctly assign the value of PRINT, you must mask the
semicolons with the macro quoting function %STR, as follows:

$let print=%str(proc print; run;);

Macro Quoting /A Passing Parameters That Contain Special Characters and Mnemonics 77

Overview of Macro Quoting Functions

The following macro quoting functions are most commonly used:
o %STR and %NRSTR

o %BQUOTE and %NRBQUOTE

o %SUPERQ

For the paired macro quoting functions, the function beginning with NR affects the
same category of special characters that are masked by the plain macro quoting
function as well as ampersands and percent signs. In effect, the NR functions prevent
macro and macro variable resolution. To help you remember which does which, try
associating the NR in the macro quoting function names with the words “not resolved”
— that is, macros and macro variables are not resolved when you use these functions.

The macro quoting functions with B in their names are useful for macro quoting
unmatched quotation marks and parentheses. As a help for remembering this, try
associating B with “by itself”.

The %SUPERQ macro quoting function is unlike the other macro quoting functions
in that it does not have a mate and works differently. See “%»SUPERQ Function” on
page 244 for more information.

The macro quoting functions can also be divided into two types, depending on when
they take effect:

compilation cause the macro processor to interpret special characters as text in a

functions macro program statement in open code or while compiling
(constructing) a macro. The %STR and %NRSTR functions are
compilation functions.

execution cause the macro processor to treat special characters that result

functions from resolving a macro expression as text (such as a macro variable
reference, a macro invocation, or the argument of an implicit
%EVAL function). They are called execution functions because
resolution occurs during macro execution or during execution of a
macro program statement in open code. The macro processor
resolves the expression as far as possible, issues any warning
messages for macro variable references or macro invocations it
cannot resolve, and quotes the result. The %BQUOTE and
2%NRBQUOTE functions are execution functions.

The %SUPERQ function takes as its argument a macro variable name (or a macro
expression that yields a macro variable name). The argument must not be a reference
to the macro variable whose value you are masking. That is, do not include the &
before the name.

Note: Two other execution macro quoting functions exist: #QUOTE and
%NRQUOTE. They are useful for unique macro quoting needs and for compatibility
with older macro applications. For more information on these two macro quoting
functions, refer to Chapter 13, “Macro Language Dictionary,” on page 163. A

Passing Parameters That Contain Special Characters and Mnemonics

Using an execution macro quoting function in the macro definition is the simplest
and best way to have the macro processor accept resolved values that might contain
special characters. However, if you discover that you need to pass parameter values

78 Deciding When to Use a Macro Quoting Function and Which Function to Use A Chapter 7

such as or when a macro has not been defined with an execution macro quoting
function, you can do so by masking the value in the macro invocation. The logic of the
process is as follows:

1 When you mask a special character with a macro quoting function, it remains
masked as long as it is within the macro facility (unless you use the “AUNQUOTE
Function” on page 305).

2 The macro processor constructs the complete macro invocation before beginning to
execute the macro.

3 Therefore, you can mask the value in the invocation with the %STR function.
Although the masking is not needed when the macro processor is constructing the
invocation, the value is already masked by a macro quoting function when macro
execution begins and therefore does not cause problems during macro execution.

For example, suppose a macro named ORDERX does not use the %BQUOTE function.
You can pass the value or to the ORDERX macro with the following invocation:

gorderx(%$str(or))

However, placing the macro quoting function in the macro definition makes the
macro much easier for you to invoke.

Deciding When to Use a Macro Quoting Function and Which Function
to Use

Use a macro quoting function anytime you want to assign to a macro variable a
special character that could be interpreted as part of the macro language. The following
table describes the special characters to mask when used as part of a text string and
which macro quoting functions are useful in each situation.

Table 7.1 Special Characters and Macro Quoting Guidelines

Quoted by All
Special Macro Quoting
Character... Must Be Masked... Functions? Remarks
+-F<>=N |- ~ # to prevent it from being treated yes AND, OR, IN, and
LE LT EQ NE as an operator in the argument NOT need to be
GE GT AND OR of an explicit or implicit masked because they
NOT IN %EVAL function are interpreted as
mnemonic operators
by an implicit 2#EVAL
and by %SYSEVALF.
blank to maintain, rather than ignore, yes
a leading, trailing, or isolated
blank
; to prevent a macro program yes
statement from ending
prematurely
, (comma) to prevent it from indicating a yes

new function argument,
parameter, or parameter value

Macro Quoting /A Deciding When to Use a Macro Quoting Function and Which Function to Use 79

Special
Character...

Must Be Masked...

Quoted by All
Macro Quoting
Functions?

Remarks

’u()

%name &name

if it might be unmatched

(depends on what the

expression might resolve to)

no

no

Arguments that
might contain
quotation marks and
parentheses should be
masked with a macro
quoting function so
that the macro facility
interprets the single
and double quotation
marks and
parentheses as text
rather than macro
language symbols or
possibly unmatched
quotation marks or
parentheses for the
SAS language. With
%STR, %NRSTR,
%QUOTE, and
%NRQUOTE,
unmatched quotation
marks and
parentheses must be
marked with a %
sign. You do not have
to mark unmatched
symbols in the
arguments of
%BQUOTE,
%NRBQUOTE, and
%SUPERQ.

%NRSTR,
%NRBQUOTE, and
%NRQUOTE mask
these patterns. To use
%SUPERQ with a
macro variable, omit
the ampersand from
name.

The macro facility allows you as much flexibility as possible in designing your
macros. You need to mask a special character with a macro quoting function only when
the macro processor would otherwise interpret the special character as part of the
macro language rather than as text. For example, in this statement you must use a
macro quoting function to mask the first two semicolons to make them part of the text:

$let p=%str(proc print; run;);

80

Using the %STR and %NRSTR Functions A Chapter 7

However, in the macro PR, shown here, you do not need to use a macro quoting
function to mask the semicolons after PRINT and RUN:

gmacro pr(start);
$if &start=yes %then
%do;
gput proc print requested;
proc print;
run;
%end;
gmend pr;

Because the macro processor does not expect a semicolon within the %DO group, the
semicolons after PRINT and RUN are not ambiguous, and they are interpreted as text.

Although it is not possible to give a series of rules that cover every situation, the
following sections describe how to use each macro quoting function. Table 7.4 on page
89 provides a summary of the various characters that might need masking and of which
macro quoting function is useful in each situation.

Note: You can also perform the inverse of a macro quoting function — that is,
remove the tokenization provided by macro quoting functions. For an example of when
the %2UNQUOTE function is useful, see “Unquoting Text” on page 89. A

Using the %STR and %NRSTR Functions

If a special character or mnemonic affects the way the macro processor constructs
macro program statements, you must mask the item during macro compilation (or
during the compilation of a macro program statement in open code) by using either the
%STR or %NRSTR macro quoting functions.

These macro quoting functions mask the following special characters and mnemonics:

blank) = NE
; (| LE
- + # LT
A — AND GE
~ * OR GT
, (comma) / NOT

’ < IN

“ > EQ

In addition to these, %NRSTR masks & and %.

Note: If an unmatched single or double quotation mark or a left or right parenthesis
is used with %STR or %NRSTR, these characters must be preceded by a percent sign
(%). ~

When you use %STR or %NRSTR, the macro processor does not receive these
functions and their arguments when it executes a macro. It receives only the results of

Macro Quoting /A Using % Signs with %STR 81

these functions because these functions work when a macro compiles. This means by
the time the macro executes, the string is already masked by a macro quoting function.
Therefore, %STR and %NRSTR are useful for masking strings that are constants, such
as sections of SAS code. In particular, #NRSTR is a good choice for masking strings
that contain % and & signs. However, these functions are not so useful for masking
strings that contain references to macro variables because it is possible that the macro
variable could resolve to a value not quotable by %STR or %2NRSTR. For example, the
string could contain an unmarked, unmatched left parenthesis.

Using Unmatched Quotation Marks and Parentheses with %STR and
%NRSTR

If the argument to %STR or %NRSTR contains an unmatched single or double
quotation mark or an unmatched left or right parenthesis, precede each of these
characters with a % sign. The following table shows some examples of this technique.

Table 7.2 Examples of Marking Unmatched Quotation Marks and Parentheses with
%STR and %NRSTR

Notation Description Example Quoted Value Stored
% unmatched single quotation slet a’
mark myvar=%str(a%s’);
%" unmatched double quotation gjet title ‘‘first
mark myvar=%str(title

g’ 'first);

%(unmatched left parenthesis $let myvar=3$str log(12
(log%(12);
%) unmatched right $let myvar=3$str 345)
parenthesis (345%));

Using % Signs with %STR

In general, if you want to mask a % sign with a macro quoting function at
compilation, use %NRSTR. There is one case where you can use %STR to mask a %
sign: when the % sign does not have any text following it that could be construed by the
macro processor as a macro name. The % sign must be marked by another % sign.
Here are some examples.

Table 7.3 Examples of Masking % Signs with %STR

Notation Description Example Quoted Value Stored
"%’ % sign before a matched $let %’

single quotation mark myvar=3str(’'%’);
%% %’ % sign before an unmatched %let %’

single quotation mark myvar=3str(%3%');

82 Examples Using %STR A Chapter 7

Notation Description Example Quoted Value Stored
""%% % sign after a matched slet "y

double quotation mark myvar=3str(""%%);
0% % % two % signs in a row slet %%

myvar=3str(%%%%);

Examples Using %STR

The %STR function in the following %LET statement prevents the semicolon after
PROC PRINT from being interpreted as the ending semicolon for the %LET statement:

$let printit=%str(proc print; run;);

As a more complex example, the macro KEEPIT1 shows how the %STR function
works in a macro definition:

gmacro keepitl(size);
$if &size=big %then %str(keep city _numeric_;);
%else %str(keep city;);

gmend keepitl;

Call the macro as follows:
gkeepitl(big)

This produces the following statement:
keep city _numeric_;

When you use the %STR function in the %IF-%THEN statement, the macro
processor interprets the first semicolon after the word %#THEN as text. The second
semicolon ends the %#THEN statement, and the %#ELSE statement immediately follows
the %THEN statement. Thus, the macro processor compiles the statements as you
intended. However, if you omit the %STR function, the macro processor interprets the
first semicolon after the word %THEN as the end of the %THEN clause and the next
semicolon as constant text. Because only a %THEN clause can precede a %ELSE
clause, the semicolon as constant text causes the macro processor to issue an error
message and not compile the macro.

In the %ELSE statement, the %STR function causes the macro processor to treat the
first semicolon in the statement as text and the second one as the end of the #ELSE
clause. Therefore, the semicolon that ends the KEEP statement is part of the
conditional execution. If you omit the %STR function, the first semicolon ends the
%ELSE clause and the second semicolon is outside the conditional execution. It is
generated as text each time the macro executes. (In this example, the placement of the
semicolon does not affect the SAS code.) Again, using %STR causes the macro
KEEPIT1 to compile as you intended.

Here is an example that uses %STR to mask a string that contains an unmatched
single quotation mark. Note the use of the % sign before the quotation mark:

$let innocent=%str(I didn%’'t do it!);

Examples Using %NRSTR

Suppose you want the name (not the value) of a macro variable to be printed by the
%PUT statement. To do so, you must use the %NRSTR function to mask the & and
prevent the resolution of the macro variable, as in the following example:

Macro Quoting /A Examples Using %NRSTR 83

gmacro example;
%local myvar;
$let myvar=abc;
$put %nrstr(The string &myvar appears in log output,);
gput instead of the variable value.;
gmend example;

gexample
This code writes the following text to the SAS log:

The string &myvar appears in log output,
instead of the variable value.

If you did not use the %#NRSTR function or if you used %STR, the following
undesired output would appear in the SAS log:

The string abc appears in log output,
instead of the variable value.

The %NRSTR function prevents the & from triggering macro variable resolution.
The %NRSTR function is also useful when the macro definition contains patterns
that the macro processor would ordinarily recognize as macro variable references, as in

the following program:

gmacro credits(d=%nrstr(Mary&Stacy&Joan Ltd.));
footnote "Designed by &d";
¢mend credits;

Using %NRSTR causes the macro processor to treat &STACY and &JOAN simply as
part of the text in the value of D; the macro processor does not issue warning messages
for unresolvable macro variable references. Suppose you invoke the macro CREDITS
with the default value of D, as follows:

gcredits()
Submitting this program generates the following FOOTNOTE statement:
footnote "Designed by Mary&Stacy&Joan Ltd.";

If you omit the %NRSTR function, the macro processor attempts to resolve the
references &STACY and &JOAN as part of the resolution of &D in the FOOTNOTE
statement. The macro processor issues these warning messages (assuming the
SERROR system option, described in Chapter 13, “Macro Language Dictionary,” on
page 163, is active) because no such macro variables exist:

WARNING: Apparent symbolic reference STACY not resolved.
WARNING: Apparent symbolic reference JOAN not resolved.

Here is a final example of using %NRSTR. Suppose you wanted to have a text string
include the name of a macro function: This is the result of 3NRSTR. Here is the
program:

$put This is the result of %nrstr(%nrstr);

You must use 2NRSTR to mask the % sign at compilation, so the macro processor
does not try to invoke %NRSTR a second time. If you did not use %2INRSTR to mask the
string $nrstr, the macro processor would complain about a missing open parenthesis
for the function.

84

Using the %BQUOTE and %NRBQUOTE Functions A Chapter 7

Using the %BQUOTE and %NRBQUOTE Functions

%BQUOTE and %2NRBQUOTE mask values during execution of a macro or a macro
language statement in open code. These functions instruct the macro processor to
resolve a macro expression as far as possible and mask the result, issuing any warning
messages for macro variable references or macro invocations it cannot resolve. These
functions mask all the characters that %STR and %NRSTR mask with the addition of
unmarked percent signs; unmatched, unmarked single and double quotation marks;
and unmatched, unmarked opening and closing parentheses. That means that you do
not have to precede an unmatched quotation mark with a % sign, as you must when
using %STR and %NRSTR.

The %#BQUOTE function treats all parentheses and quotation marks produced by
resolving macro variable references or macro calls as special characters to be masked at
execution time. (It does not mask parentheses or quotation marks that are in the
argument at compile time .) Therefore, it does not matter whether quotation marks and
parentheses in the resolved value are matched; each one is masked individually.

The %NRBQUOTE function is useful when you want a value to be resolved when
first encountered, if possible, but you do not want any ampersands or percent signs in
the result to be interpreted as operators by an explicit or implicit %EVAL function.

If the argument of the %2NRBQUOTE function contains an unresolvable macro
variable reference or macro invocation, the macro processor issues a warning message
before it masks the ampersand or percent sign (assuming the SERROR or MERROR
system option, described in is in effect). To suppress the message for unresolved macro
variables, use the %2SUPERQ function (discussed later in this section) instead.

Because the %BQUOTE and %NRBQUOTE functions operate during execution and
are more flexible than %STR and %NRSTR, %BQUOTE and %NRBQOUTE are good
choices for masking strings which contain macro variable references.

Examples Using %BQUOTE

In the following statement, the %IF-%THEN statement uses %2BQUOTE to prevent
an error if the macro variable STATE resolves to OR (for Oregon), which the macro
processor would interpret as the logical operator OR otherwise:

%if %bquote(&state)=%str(OR) %then %put Oregon Dept. of Revenue;

Note: This example works if you use %STR, but it is not robust or good
programming practice. Because you cannot guarantee what &STATE is going to resolve
to, you need to use 2BQUOTE to mask the resolution of the macro variable at
execution time, not the name of the variable itself at compile time. A

In the following example, a DATA step creates a character value containing a single
quotation mark and assigns that value to a macro variable. The macro READIT then
uses the %BQUOTE function to enable a %IF condition to accept the unmatched single
quotation mark:

data test;
store="Susan’'s Office Supplies";
call symput(’s’,store);

run;

gmacro readit;
$if %bquote(&s) ne %then %put *** valid ***;

Macro Quoting / Deciding How Much Text to Mask with a Macro Quoting Function 85

%else %$put *** null value ***;
gmend readit;

¢readit

When you assign the value Susan’s Office Supplies to STORE in the DATA step,
enclosing the character string in double quotation marks enables you to use an
unmatched single quotation mark in the string. SAS stores the value of STORE as

Susan’s Office Supplies

The CALL SYMPUT routine assigns that value (containing an unmatched single
quotation mark) as the value of the macro variable S. If you do not use the %BQUOTE
function when you reference S in the macro READIT, the macro processor issues an
error message for an invalid operand in the %IF condition.

When you submit the code, the following is written to the SAS log:

%x yglid *

Referring to Already Quoted Variables

Items that have been masked by a macro quoting function, such as the value of
WHOSE in the following program, remain masked as long as the item is being used by
the macro processor. When you use the value of WHOSE later in a macro program
statement, you do not need to mask the reference again.

/* Use %STR to mask the constant, and use a % sign to mark */
/* the unmatched single quotation mark. */
%let whose=%str(John%'s);

/* You don’t need to mask the macro reference, since it was */
/* masked in the $%LET statement, and remains masked. */

gput *** This coat is &whose ***;

Deciding How Much Text to Mask with a Macro Quoting Function

In each of the following statements, the macro processor treats the masked
semicolons as text:

$let p=%str(proc print; run;);
$let p=proc %str(print;) %str(run;);
%let p=proc print%str(;) run%str(;);

The value of P is the same in each case:
proc print; run;

The results of the three %#LET statements are the same because when you mask text
with a macro quoting function, the macro processor quotes only the items that the
function recognizes. Other text enclosed in the function remains unchanged. Therefore,
the third %#LET statement is the minimalist approach to macro quoting. However,
masking large blocks of text with a macro quoting function is harmless and actually
results in code that is much easier to read (such as the first %LET statement).

86

Using %SUPERQ A Chapter 7

Using %SUPERQ

The %SUPERQ function locates the macro variable named in its argument and quotes
the value of that macro variable without permitting any resolution to occur. It masks
all items that might require macro quoting at macro execution. Because %SUPERQ
does not attempt any resolution of its argument, the macro processor does not issue any
warning messages that a macro variable reference or a macro invocation has not been
resolved. Therefore, even when the %NRBQUOTE function enables the program to
work correctly, you can use the %SUPERQ function to eliminate unwanted warning
messages from the SAS log. %SUPERQ takes as its argument either a macro variable
name without an ampersand or a text expression that yields a macro variable name.

%SUPERQ retrieves the value of a macro variable from the macro symbol table and
quotes it immediately, preventing the macro processor from making any attempt to
resolve anything that might occur in the resolved value. For example, if the macro
variable CORPNAME resolves to Smith&Jones, using %SUPERQ prevents the macro
processor from attempting to further resolve &Jones. This %LET statement
successfully assigns the value smith&Jones to TESTVAR:

%let testvar=%superqg(corpname);

Examples Using %SUPERQ

This example shows how the %SUPERQ function affects two macro invocations, one
for a macro that has been defined and one for an undefined macro:

gmacro a;
$put *** This is a. ***;

gmend a;

gmacro test;

$put *** Enter two values: ***;

$input;

$put *** Ysuperq(sysbuffr) ***; /* Note absence of ampersand */
gmend test;

Suppose you invoke the macro TEST and respond to the prompt as shown:

gtest
*** Enter two values: ***
%a %x

The second %PUT statement simply writes the following line:
*%k% 3z X *rk*

It does not invoke the macro A, and it does not issue a warning message that %X was
not resolved. See Chapter 13, “Macro Language Dictionary,” on page 163 for a
description of SYSBUFFR.

The following two examples compare the %SUPERQ function with other macro
quoting functions.

Using the %SUPERQ Function to Prevent Warning Messages

The sections about of the %2NRBQUOTE function show that it causes the macro
processor to attempt to resolve the patterns &name and %name the first time it
encounters them during macro execution. If the macro processor cannot resolve them, it

Macro Quoting A Examples Using %SUPERQ 87

quotes the ampersand or percent sign so that later uses of the value do not cause the
macro processor to recognize them. However, if the MERROR or SERROR option is in
effect, the macro processor issues a warning message that the reference or invocation
was not resolved.

The macro FIRMS3, shown here, shows how the %SUPERQ function can prevent
unwanted warning messages:

gmacro firms3;
%global code;
¢put Enter the name of the company;
%input;
%let name=%superq(sysbuffr);
%2if &name ne %then %let code=valid;
%else %let code=invalid;
gput *** &name is &code ***x;
g¢mend firms3;

Suppose you invoke the macro FIRMS3 twice and respond with the companies shown
here:

A&A Autos
Santos&D’Amato

After the macro executes, the following is written to the SAS log:

*%x% A&A Autos is valid **x*
*%% Santos&D’Amato is valid **x*

Using the %SUPERQ Function to Enter Macro Keywords

Suppose you create an online training system in which users can enter problems and
questions that another macro prints for you later. The user’s response to a %INPUT
statement is assigned to a local macro variable and then to a global macro variable.
Because the user is asking questions about macros, he or she may enter all sorts of
macro variable references and macro calls as examples of problems, as well as
unmatched, unmarked quotation marks and parentheses. If you mask the response
with %2BQUOTE, you have to use a few %PUT statements to warn the user about
responses that cause problems. If you use the %SUPERQ function, you need fewer
instructions. The macros ASK1 and ASK2 show how the macro code becomes simpler as
you change macro quoting functions.

The macro ASK1, below, shows how the macro looks when you use the %BQUOTE
function:

gmacro askl;
%2global myprob;
%local temp;
$put Describe the problem.;
g¢put Do not use macro language keywords, macro calls,;
gput or macro variable references.;
$put Enter /// when you are finished.;
%do %until(%bquote(&sysbuffr) eq %str(///));
%input;
$let temp=&temp %bquote(&sysbuffr);
%end;
%let myprob=&temp;
gmend askl;

88 Summary of Macro Quoting Functions and the Characters They Mask A Chapter 7

The macro ASK1 does not include a warning about unmatched quotation marks and
parentheses. You can invoke the macro ASK1 and enter a problem as shown:

%askl

Describe the problem.

Do not use macro language keywords, macro calls,

or macro variable references.

Enter /// when you are finished.

Why didn’t my macro run when I called it? (It had three
parameters, but I wasn’t using any of them.) It ran
after I submitted the next statement.

/177

Notice that both the first and second lines of the response contain an unmatched,
unmarked quotation mark and parenthesis. %BQUOTE can handle these characters
during execution.

The macro ASK2, shown here, modifies the macro ASK1 by using the %SUPERQ
function. Now the %INPUT statement accepts macro language keywords and does not
attempt to resolve macro calls and macro variable references:

gmacro ask2;
$global myprob;
%local temp;
$put Describe the problem.;
gput Enter /// when you are finished.;

%$do %until(%superq(sysbuffr) eq %str(///)); /* No ampersand */
%input;
%let temp=&temp %superq(sysbuffr); /* No ampersand */
gend;

%let myprob=&temp;
gmend ask2;

You can invoke the macro ASK2 and enter a response as shown:

$ask2

Describe the problem.

Enter /// when you are finished.

My macro ADDRESS starts with $MACRO ADDRESS (COMPANY,

CITY);. I called it with %ADDRESS(SMITH-JONES, INC., BOSTON),
but it said I had too many parameters. What happened?
/77

The response contains a macro language keyword, a macro invocation, and
unmatched parentheses.

Summary of Macro Quoting Functions and the Characters They Mask

Different macro quoting functions mask different special characters and mnemonics
so the macro facility interprets them as text instead of as macro language symbols.

The following table divides the symbols into categories and shows which macro
quoting functions mask which symbols.

Macro Quoting /A Unquoting Text 89

Table 7.4 Summary of Special Characters and Macro Quoting Functions

By Item

Group

Items

Macro Quoting Functions

A

+ — */<>=-"| ~;, # blank AND OR
NOT EQ NE LE LT GE GT IN

&%

unmatched’ “()

all

%NRSTR, %NRBQUOTE, %SUPERQ,
%NRQUOTE

%BQUOTE, %NRBQUOTE,
%SUPERQ, %STR*, %NRSTR¥,
%QUOTE*, %NRQUOTE*

By Function

Function

Affects Groups

Works at

%STR
%NRSTR
%BQUOTE
%NRBQUOTE
%SUPERQ

%QUOTE

%NRQUOTE

A, C*
A, B, C*
AC

A B, C
A B, C

A, C*

A, B, C*

macro compilation
macro compilation
macro execution
macro execution

macro execution (prevents
resolution)

macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

*Unmatched quotation marks and parentheses must be marked with a percent sign (%) when used
with %STR, %NRSTR, %QUOTE, and %NRQUOTE.

Unquoting Text

To unquote a value means to restore the significance of symbols in an item that was

previously masked by a macro quoting function.

Usually, after an item has been masked by a macro quoting function, it retains its
special status until one of the following occurs:

o0 You enclose the item with the %UNQUOTE function (described in Chapter 13,

“Macro Language Dictionary,” on page 163.

90

Example of Unquoting A Chapter 7

0 The item leaves the word scanner and is passed to the DATA step compiler, SAS
procedures, or other parts of SAS, when the item is part of generated SAS
statements.

0 The item is returned as an unquoted result by the %SCAN, %SUBSTR, or
%UPCASE function. (To retain a value’s masked status during one of these
operations, use the %2QSCAN, %2QSUBSTR, or %QUPCASE function. See “Other
Functions That Perform Macro Quoting” on page 92 for more details.)

As a rule, you do not need to unquote an item because it is automatically unquoted
when the item is passed from the word scanner to the rest of SAS. Under two
circumstances, however, you might need to use the %UNQUOTE function to restore the
original significance to a masked item:

O when you want to use a value with its restored meaning later in the same macro
in which its value was previously masked by a macro quoting function.

0O when, as in a few cases, masking text with a macro quoting function changes the
way the word scanner tokenizes it, producing SAS statements that look correct but
that the SAS compiler does not recognize.

Example of Unquoting

The following example illustrates using a value twice: once in macro quoted form and
once in unquoted form. Suppose the macro ANALYZE is part of a system that enables
you to compare the output of two statistical models interactively. First, you enter an
operator to specify the relationship you want to test (one result greater than another,
equal to another, and so forth). The macro ANALYZE tests the macro quoted value of
the operator to verify that you have entered it correctly, uses the unquoted value to
compare the values indicated, and writes a message. Match the numbers in the
comments to the paragraphs below.

gmacro analyze(stat);
data _null ;
set outl;
call symput(’vl’,&stat);

run;

data _null ;
set out2;
call symput(’v2’,&stat);

run;

$put Preliminary test. Enter the operator.;
$input;
$let op=%bquote(&sysbuffr);
$if &op=%str(=<) %then %let op=%str(<=);
%else %if &op=%str(=>) %then %let op=%str(>=);
$if &vl %unquote(&op) &v2 %then
gput You may proceed with the analysis.;
$else
%do;
gput &stat from outl is not &op &stat from out2.;
¢put Please check your previous models.;
%end;
gmend analyze;

Macro Quoting /A How Macro Quoting Works 91

You mask the value of SYSBUFFR with the %BQUOTE function, which masks resolved
items including unmatched, unmarked quotation marks and parentheses (but excluding
the ampersand and percent sign).

The %IF condition compares the value of the macro variable OP to a string to see
whether the value of OP contains the correct symbols for the operator. If the value
contains symbols in the wrong order, the #THEN statement corrects the symbols.
Because a value masked by a macro quoting function remains masked, you do not need
to mask the reference &OP in the left side of the %IF condition.

Because you can see the characters in the right side of the %IF condition and in the
%LET statement when you define the macro, you can use the %STR function to mask
them. Masking them once at compilation is more efficient than masking them at each
execution of ANALYZE.

To use the value of the macro variable OP as the operator in the %IF condition, you
must restore the meaning of the operator with the %UNQUOTE function.

What to Do When Automatic Unquoting Does Not Work

When the macro processor generates text from an item masked by a macro quoting
function, you can usually allow SAS to unquote the macro quoted items automatically.
For example, suppose you define a macro variable PRINTIT as follows:

%let printit=%str(proc print; run;);
Then you use that macro variable in your program like this:
gput *** This code prints the data set: &printit ***;

When the macro processor generates the text from the macro variable, the items
masked by macro quoting functions are automatically unquoted, and the previously
masked semicolons work normally when they are passed to the rest of SAS.

In rare cases, masking text with a macro quoting function changes the way the word
scanner tokenizes the text. (The word scanner and tokenization are discussed in
Chapter 2, “SAS Programs and Macro Processing,” on page 11 and Chapter 4, “Macro
Processing,” on page 33.) For example, a single or double quotation mark produced by
resolution within the %BQUOTE function becomes a separate token. The word scanner
does not use it as the boundary of a literal token in the input stack. If generated text
that was once masked by the %2BQUOTE function looks correct but SAS does not accept
it, you might need to use the 2UNQUOTE function to restore normal tokenization.

How Macro Quoting Works

When the macro processor masks a text string, it masks special characters and
mnemonics within the coding scheme, and prefixes and suffixes the string with a
hexadecimal character, called a delta character. The prefix character marks the
beginning of the string and also indicates what type of macro quoting is to be applied to
the string. The suffix character marks the end of the string. The prefix and suffix
characters preserve any leading and trailing blanks contained by the string. The
hexadecimal characters used to mask special characters and mnemonics and those used
for the prefix and suffix characters may vary and are not portable.

There are more hexadecimal combinations possible in each byte than are needed to
represent the symbols on a keyboard. Therefore, when a macro quoting function
recognizes an item to be masked, the macro processor uses a previously unused
hexadecimal combination for the prefix and suffix characters.

92

Other Functions That Perform Macro Quoting A Chapter 7

Macro functions, such as %EVAL and %SUBSTR, ignore the prefix and suffix
characters. Therefore, the prefix and suffix characters do not affect comparisons.

When the macro processor is finished with a macro quoted text string, it removes the
macro quoting-coded substitute characters and replaces them with the original
characters. The unmasked characters are passed on to the rest of the system.
Sometimes you might see a message about this unmasking, as in the following example:

/* Turn on SYMBOLGEN so you can see the messages about unquoting. */
options symbolgen;

/* Assign a value to EXAMPLE that contains several special */
/* characters and a mnemonic. */
%let example = %nrbquote(1 + 1 = 3 Today’s Test and More);

gput *&example*;
When this program is submitted, the following appears in the SAS log:

SYMBOLGEN: Macro variable EXAMPLE resolves to 1 + 1 = 3 Today'’s
Test and More

SYMBOLGEN: Some characters in the above value which were subject
to macro quoting have been unquoted for printing.

* 1 + 1 = 3 Today's Test and More *

As you can see, the leading and trailing blanks and special characters were retained
in the variable’s value. While the macro processor was working with the string, the
string actually contained coded characters that were substituted for the “real”
characters. The substitute characters included coded characters to represent the start
and end of the string. This preserved the leading and trailing blanks. Characters were
also substituted for the special characters +, =, and ’, and the mnemonic AND. When the
macro finished processing and the characters were passed to the rest of SAS, the coding
was removed and the real characters were replaced.

“Unquoting Text” on page 89 provides more information on what happens when a
masked string is unquoted. Chapter 13, “Macro Language Dictionary,” on page 163
describes the SYMBOLGEN system option.

Other Functions That Perform Macro Quoting

Some macro functions are available in pairs, where one function starts with the
letter Q:

o %SCAN and %QSCAN

o %SUBSTR and %QSUBSTR

o %UPCASE and %QUPCASE

o %SYSFUNC and %QSYSFUNC.

The Qxxx functions are necessary because by default, macro functions return an
unquoted result, even if the argument was masked by a macro quoting function. The
%QSCAN, %QSUBSTR, %#QUPCASE, and %QSYSFUNC functions mask the returned

value at execution time. The items masked are the same as those masked by the
%NRBQUOTE function.

Macro Quoting /A Example Using the %QSCAN Function 93

Example Using the %QSCAN Function

The following macro uses the %QSCAN function to assign items in the value of
SYSBUFFR (described in Chapter 13, “Macro Language Dictionary,” on page 163) as
the values of separate macro variables. The numbers in the comments correspond to
the explanations in the list that follows the macro code.

gmacro splitit;
%put What character separates the values?; @
%input;
$let s=%bquote(&sysbuffr); @
gput Enter three values.;
$input;
%local i;
%do i=1 %to 3; @
%global x&i;
$let x&i=%gscan(%superq(sysbuffr),&i,&s); @
%end;
gmend splitit;

$splitit

What character separates the values?

#

Enter three values.

Fischer Books#Smith&Sons#Sarah’s Sweet Shoppe @

1 This question asks you to input a delimiter for the %2QSCAN function that will not
appear in the values you are going to enter.

2 Masking the value of SYSBUFFR with the %BQUOTE function enables you to
choose a quotation mark or parenthesis as a delimiter if necessary.

3 The iterative %DO loop creates a global macro variable for each segment of
SYSBUFFR and assigns it the value of that segment.

4 The %SUPERQ function masks the value of SYSBUFFR in the first argument of
the %#QSCAN function. It prevents any resolution of the value of SYSBUFFR.

5 The %QSCAN function returns macro quoted segments of the value of
SYSBUFFR. Thus, the unmatched quotation mark in Sarah’s Sweet Shoppe and
the &name pattern in Smith&Sons do not cause problems.

94

95

CHAPTER

Interfaces with the Macro
Facility

Introduction to Interfaces with the Macro Facility 95
DATA Step Interfaces 96
CALL EXECUTE Routine Timing Details 96
Example of Using CALL EXECUTE Incorrectly 97
Example of Common Problem with CALL EXECUTE 98
Using SAS Language Functions in the DATA Step and Macro Facility 99
Interfaces with the SQL Procedure 100
INTO Clause 100
Controlling Job Execution 100
Interfaces with the SAS Component Language 101
How Macro References Are Resolved by SCL 102
Referencing Macro Variables in Submit Blocks 102
Considerations for Sharing Macros between SCL Programs 102
Example Using Macros in an SCL Program 102
SAS/CONNECT Interfaces 103
Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host 104

Introduction to Interfaces with the Macro Facility

An interface with the macro facility is not part of the macro processor but rather a
SAS software feature that enables another portion of the SAS language to interact with
the macro facility during execution. For example, a DATA step interface enables you to
access macro variables from the DATA step. Macro facility interfaces are useful
because, in general, macro processing happens before DATA step, SQL, SCL, or
SAS/CONNECT execution, so the connection between the macro facility and the rest of
SAS is not usually dynamic. But by using an interface to the macro facility, you can
dynamically connect the macro facility to the rest of SAS.

Note: The %SYSFUNC and %QSYSFUNC macro functions enable you to use SAS
language functions with the macro processor. The %SYSCALL macro statement enables
you to use SAS language CALL routines with the macro processor. While these
elements of the macro language are not considered true macro facility interfaces, they
are discussed in this section. See Chapter 13, “Macro Language Dictionary,” on page
163 for more information on these macro language elements. A

While this section includes some examples, you can find additional examples for each
item in Chapter 13, “Macro Language Dictionary,” on page 163.

96 DATA Step Interfaces A Chapter 8

DATA Step Interfaces

DATA step interfaces consist of eight tools that enable a program to interact with the
macro facility during DATA step execution. Because the work of the macro facility
takes place before DATA step execution begins, information provided by macro
statements has already been processed during DATA step execution. You can use one of
the DATA step interfaces to interact with the macro facility during DATA step
execution. You can use DATA step interfaces to do the following:

O pass information from a DATA step to a subsequent step in a SAS program
invoke a macro based on information available only when the DATA step executes
resolve a macro variable while a DATA step executes

delete a macro variable

O oo od

pass information about a macro variable from the macro facility to the DATA step.

The following table lists the DATA step interfaces by category and their uses.

Table 8.1 DATA Step Interfaces to the Macro Facility

Category Tool Description

Execution CALL EXECUTE routine resolves its argument and executes the
resolved value at the next step boundary
(if the value is a SAS statement) or
immediately (if the value is a macro
language element).

Resolution RESOLVE function resolves the value of a text expression
during DATA step execution.

Deletion CALL SYMDEL routine deletes the indicated macro variable
named in the argument.

Information SYMEXIST function returns an indication as to whether the
macro variable exists.

Read or Write SYMGET function returns the value of a macro variable
during DATA step execution.

Information SYMGLOBL function returns an indication as to whether the
macro variable is global in scope.

Information SYMLOCAL returns an indication as to whether the
macro variable is local in scope.
Read or Write CALL SYMPUT routine assigns a value produced in a DATA step

to a macro variable.

CALL EXECUTE Routine Timing Details

CALL EXECUTE is useful when you want to execute a macro conditionally. But you
must remember that if CALL EXECUTE produces macro language elements, those
elements execute immediately. If CALL EXECUTE produces SAS language statements,
or if the macro language elements generate SAS language statements, those statements
execute after the end of the DATA step’s execution.

Note: Because macro references execute immediately and SAS statements do not
execute until after a step boundary, you cannot use CALL EXECUTE to invoke a macro

Interfaces with the Macro Facility /A CALL EXECUTE Routine Timing Details 97

that contains references for macro variables that are created by CALL SYMPUT in that
macro. A

Here are two examples that illustrate the timing problems that users frequently
have with CALL EXECUTE.

Example of Using CALL EXECUTE Incorrectly
In this example, the CALL EXECUTE routine is used incorrectly:

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300

99 10000

24 225

’

gmacro items;

%global special;

%let special=football;
gmend items;

data sales; /* incorrect usage */
set prices;
length saleitem $ 20;
call execute(’'%items’);
saleitem="&special";

run;

In the DATA SALES step, the assignment statement for SALEITEM requires the
value of the macro variable SPECIAL at DATA step compilation. CALL EXECUTE does
not produce the value until DATA step execution. Thus, you receive a message about an
unresolved macro variable, and the value assigned to SALEITEM is &special.

In this example, it would be better to eliminate the macro definition (the %LET
macro statement is valid in open code) or move the DATA SALES step into the macro
ITEMS. In either case, CALL EXECUTE is not necessary or useful. Here is one version
of this program that works:

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300

99 10000

24 225

i
$let special=football; /* correct usage */

data sales;
set prices;
length saleitem $ 20;
saleitem="&special";

run;

The %GLOBAL statement isn’t necessary in this version. Because the %LET
statement is executed in open code, it automatically creates a global macro variable.

98 CALL EXECUTE Routine Timing Details A Chapter 8

(See Chapter 5, “Scopes of Macro Variables,” on page 41 for more information about
macro variable scopes.)

Example of Common Problem with CALL EXECUTE

This example shows a common pattern that causes an error.

/* This version of the example shows the problem. */

data prices; /* ID for price category and actual price */
input code amount;
cards;

56 300

99 10000

24 225

7
data names; /* name of sales department and item sold */
input dept $ item $;
datalines;
BB Boat
SK Skates

’

gmacro items(codevar=); /* create macro variable if needed */
%global special;
data _null ;
set names;
if &codevar=99 and dept='BB’ then call symput(’special’, item);
run;

¢mend items;

data sales; /* attempt to reference macro variable fails */
set prices;
length saleitem $ 20;
if amount > 500 then
call execute(’%items(codevar=’' || code || ")’);
saleitem="&special";
run;

In this example, the DATA SALES step still requires the value of SPECIAL during
compilation. The CALL EXECUTE routine is useful in this example because of the
conditional IF statement. But as in the first example, CALL EXECUTE still invokes
the macro ITEMS during DATA step execution — not during compilation. The macro
ITEMS generates a DATA _NULL_ step that executes after the DATA SALES step has
ceased execution. The DATA _NULL_ step creates SPECIAL, and the value of
SPECIAL is available after the _'NULL_ step ceases execution, which is much later
than when the value was needed.

This version of the example corrects the problem:

/* This version solves the problem. */

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300

99 10000

Interfaces with the Macro Facility /A Using SAS Language Functions in the DATA Step and Macro Facility 99

24 225

data names; /* name of sales department and item sold */
input dept $ item $;
cards;
BB Boat
SK Ski
gmacro items(codevar=); /* create macro variable if needed */
%global special;
data _null ;
set names;
if &codevar=99 and dept='BB’ then
call symput(’'special’, item);
run;

gmend items;

data _null_; /* call the macro in this step */
set prices;
if amount > 500 then
call execute(’%items(codevar=' || code || ")’);

run;

data sales; /* use the value created by the macro in this step */
set prices;
length saleitem $ 20;
saleitem="&special";

run;

This version uses one DATA _NULL_ step to call the macro ITEMS. After that step
ceases execution, the DATA _NULL_ step generated by ITEMS executes and creates the
macro variable SPECIAL. Then the DATA SALES step references the value of
SPECIAL as usual.

Using SAS Language Functions in the DATA Step and Macro Facility

The macro functions %SYSFUNC and %QSYSFUNC can call SAS language functions
and functions written with SAS/TOOLKIT software to generate text in the macro
facility. %SYSFUNC and %2QSYSFUNC have one difference: the 2QSYSFUNC masks
special characters and mnemonics and %SYSFUNC does not. For more information
about these functions, see the %QSYSFUNC and %SYSFUNC topics in Chapter 13,
“Macro Language Dictionary,” on page 163.

%SYSFUNC arguments are a single SAS language function and an optional format,
as shown in the following examples:

¢sysfunc(date(),worddate.)
$sysfunc(attrn(&dsid,NOBS))

You cannot nest SAS language functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call SAS language functions, as in the following statement:

$sysfunc (compress(%sysfunc(getoption(sasautos)),%str(%)%(%')))

100 Interfaces with the SQL Procedure A Chapter 8

This example returns the value of the SASAUTOS= system option, using the
COMPRESS function to eliminate opening parentheses, closing parentheses, and single
quotation marks from the result. Note the use of the %STR function and the
unmatched parentheses and quotation marks that are marked with a percent sign (%).

All arguments in SAS language functions within %SYSFUNC must be separated by
commas. You cannot use argument lists preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in SAS language functions. For example, the arguments
to the OPEN function are enclosed in quotation marks when the function is used alone
but do not require quotation marks when used within %SYSFUNC.

Here are some examples of the contrast between using a function alone and within
%SYSFUNC:

dsid = open("sasuser.houses","i");
dsid = open("&mydata", "&mode") ;

¢let dsid = %$sysfunc(open(sasuser.houses,i));

O o o o

¢let dsid = %sysfunc(open(&mydata, &mode));

You can use %2SYSFUNC and %QSYSFUNC to call all of the DATA step SAS
functions except DIF, DIM, HBOUND, INPUT, LAG, LBOUND, PUT, RESOLVE, and
SYMGET. In the macro facility, SAS language functions called by %SYSFUNC can
return values with a length up to 32K. However, within the DATA step, return values
are limited to the length of a data set character variable.

The %SYSCALL macro statement enables you to use SAS language CALL routines
with the macro processor, and it is described in Chapter 13, “Macro Language
Dictionary,” on page 163.

Interfaces with the SQL Procedure

Structured Query Language (SQL) is a standardized, widely used language for
retrieving and updating data in databases and relational tables. SAS software’s SQL
processor enables you to do the following:

create tables and views

O

retrieve data stored in tables

retrieve data stored in SQL and SAS/ACCESS views
add or modify values in tables

add or modify values in SQL and SAS/ACCESS views.

INTO Clause

SQL provides the INTO clause in the SELECT statement for creating SAS macro
variables. You can create multiple macro variables with a single INTO clause. The
INTO clause follows the same scoping rules as the %LET statement. See Chapter 3,
“Macro Variables,” on page 19 for a summary of how macro variables are created. For
further details and examples relating to the INTO clause, see Chapter 13, “Macro
Language Dictionary,” on page 163.

Controlling Job Execution
PROC SQL also provides macro tools to do the following:

Interfaces with the Macro Facility /\ Interfaces with the SAS Component Language 101

O stop execution of a job if an error occurs
O execute programs conditionally based on data values.

The following table provides information about macro variables created by SQL that
affect job execution.

Table 8.2 Macro Variables that Affect Job Execution

Macro Variable Description

SQLOBS contains the number of rows or observations produced by a SELECT
statement.

SQLRC contains the return code from an SQL statement. For return codes,

see SAS SQL documentation.

SQLOOPS contains the number of iterations that the inner loop of PROC SQL
processes.

Interfaces with the SAS Component Language

You can use the SAS macro facility to define macros and macro variables for a SCL
program. Then, you can pass parameters between macros and the rest of the program.
Also, through the use of the autocall and compiled stored macro facilities, macros can
be used by more than one SCL program.

Note: Macro modules can be more complicated to maintain than a program segment
because of the symbols and macro quoting that might be required. Also, implementing
modules as macros does not reduce the size of the compiled SCL code. Program
statements generated by a macro are added to the compiled code as if those lines
existed at that location in the program. A

The following table lists the SCL macro facility interfaces.

Table 8.3 SCL Interfaces to the Macro Facility

Category Tool Description
Read or Write SYMGET returns the value of a global macro variable
during SCL execution.
SYMGETN returns the value of a global macro variable as
a numeric value.
CALL SYMPUT assigns a value produced in SCL to a global
macro variable.
CALL SYMPUTN assigns a numeric value to a global macro
variable.

Note: It is inefficient to use SYMGETN to retrieve values that are not assigned with
SYMPUTN. It is also inefficient to use & to reference a macro variable that was created
with CALL SYMPUTN. Instead, use SYMGETN. In addition, it is inefficient to use
SYMGETN and CALL SYMPUTN with values that are not numeric. A

For details about these elements, see Chapter 13, “Macro Language Dictionary,” on
page 163.

102

How Macro References Are Resolved by SCL A Chapter 8

How Macro References Are Resolved hy SCL

An important point to remember when using the macro facility with SCL is that
macros and macro variable references in SCL programs are resolved when the SCL
program compiles, not when you execute the application. To further control the
assignment and resolution of macros and macro variables, use the following techniques:

o If you want macro variables to be assigned and retrieved when the SCL program
executes, use CALL SYMPUT and CALL SYMPUTN in the SCL program.

o If you want a macro call or macro variable reference to resolve when an SCL
program executes, use SYMGET and SYMGETN in the SCL program.

Referencing Macro Variables in Submit Blocks

In SCL, macro variable references are resolved at compile time unless they are in a
Submit block. When SCL encounters a name prefixed with an ampersand (&) in a
Submit block, it checks whether the name following the ampersand is the name of an
SCL variable. If so, SCL substitutes the value of the corresponding variable for the
variable reference in the submit block. If the name following the ampersand does not
match any SCL variable, the name passes intact (including the ampersand) with the
submitted statements. When SAS processes the statements, it attempts to resolve the
name as a macro variable reference

To guarantee that a name is passed as a macro variable reference in submitted
statements, precede the name with two ampersands (for example, &&DSNAME). If you
have both a macro variable and an SCL variable with the same name, a reference with
a single ampersand substitutes the SCL variable. To force the macro variable to be
substituted, reference it with two ampersands (&&).

Considerations for Sharing Macros hetween SCL Programs

Sharing macros between SCL programs can be useful, but it can also raise some
configuration management problems. If a macro is used by more than one program, you
must keep track of all the programs that use it so you can recompile all of them each
time the macro is updated. Because SCL is compiled, each SCL program that calls a
macro must be recompiled whenever that macro is updated.

CAUTION:
Recompile the SCL program. If you fail to recompile the SCL program when you update
the macro, you run the risk of the compiled SCL being out of sync with the source. A

Example Using Macros in an SCL Program

This SCL program is for an example application with the fields BORROWED,
INTEREST, and PAYMENT. The program uses the macros CKAMOUNT and CKRATE
to validate values entered into fields by users. The program calculates the payment,

using values entered for the interest rate (INTEREST) and the sum of money
(BORROWED).

/* Display an error message if AMOUNT */
/* is less than zero or larger than 1000. */
gmacro ckamount (amount);
if (&amount < 0) or (&amount > 1000) then
do;

Interfaces with the Macro Facility / SAS/CONNECT Interfaces

erroron borrowed;
msg='Amount must be between $0 and $1,000.";
stop;
end;
else erroroff borrowed;
gmend ckamount;

/* Display an error message if RATE */
/* is less than 0 or greater than 1.5 */
gmacro ckrate(rate);
if (&rate < 0) or (&rate > 1) then
do;
erroron interest;
msg='Rate must be between 0 and 1.5';
stop;
end;
else erroroff interest;
gmend ckrate;

/* Open the window with BORROWED at 0 and INTEREST at .5. */
INIT:

control error;

borrowed=0;

interest=.5;
return;

MAIN:
/* Run the macro CKAMOUNT to validate */
/* the value of BORROWED. */
%ckamount (borrowed) ;
/* Run the macro CKRATE to validate */
/* the value of INTEREST. */
gckrate(interest)
/* Calculate payment. */
payment=borrowed*interest;

return;

TERM:

return;

103

SAS/CONNECT Interfaces

The %SYSRPUT macro statement is submitted with SAS/CONNECT to a remote

host to retrieve the value of a macro variable stored on the remote host. %SYSRPUT
assigns that value to a macro variable on the local host. %SYSRPUT is similar to the

%LET macro statement because it assigns a value to a macro variable. However,
%SYSRPUT assigns a value to a variable on the local host, not on the remote host
where the statement is processed. The %SYSRPUT statement places the macro
variable in the current scope of the local host.

Note: The names of the macro variables on the remote and local hosts must not
contain a leading ampersand. A

104 Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host A Chapter 8

The %SYSRPUT statement is useful for capturing the value of the automatic macro
variable SYSINFO and passing that value to the local host. SYSINFO contains
return-code information provided by some SAS procedures. Both the UPLOAD and the
DOWNLOAD procedures of SAS/CONNECT can update the macro variable SYSINFO
and set it to a nonzero value when the procedure terminates due to errors. You can use
%SYSRPUT on the remote host to send the value of the SYSINFO macro variable back
to the local SAS session. Thus, you can submit a job to the remote host and test
whether a PROC UPLOAD or DOWNLOAD step has successfully completed before
beginning another step on either the remote host or the local host.

To use %SYSRPUT, you must have invoked a remote SAS windowing environment
session by submitting the DMR option with the SAS command. For details about using
%SYSRPUT, see the SAS/CONNECT documentation.

To create a new macro variable or to modify the value of an existing macro variable
on a remote host or a server, use the %SYSLPUT macro statement.

Example Using %SYSRPUT to Check the Value of a Return Code on a
Remote Host

This example illustrates how to download a file and return information about the
success of the step. When remote processing is completed, the job checks the value of
the return code stored in RETCODE. Processing continues on the local host if the
remote processing is successful. In this example, the %SYSRPUT statement follows a
PROC DOWNLOAD step, so the value returned by SYSINFO indicates the success of
the PROC DOWNLOAD step:

/* This code executes on the remote host. */
rsubmit;
proc download data=remote.mydata out=local.mydata;
run;
/* RETCODE is on the local host. */
/* SYSINFO is on the remote host. */
$sysrput retcode=&sysinfo;
endrsubmit;

/* This code executes on the local host. */
gmacro checkit;
$if &retcode = 0 %then
%do;
further processing on local host
%end;
¢mend checkit;

$checkit

To determine the success or failure of a step executed on a remote host, use the
%SYSRPUT macro statement to check the value of the automatic macro variable
SYSERR.

For more details and syntax of the %SYSRPUT statement, refer to Chapter 13,
“Macro Language Dictionary,” on page 163.

105

CHAPTER

Storing and Reusing Macros

Introduction to Storing and Reusing Macros 105
Saving Macros in an Autocall Library 106
Using Directories as Autocall Libraries 106
Using SAS Catalogs as Autocall Libraries 107
Calling an Autocall Macro 107
Saving Macros Using the Stored Compiled Macro Facility 108
Compiling and Storing a Macro Definition 108
Storing Autocall Macros Supplied by SAS 109
Calling a Stored Compiled Macro 109

Introduction to Storing and Reusing Macros

When you submit a macro definition, by default, the macro processor compiles and
stores the macro in a SAS catalog in the WORK library. These macros, referred to as
session compiled macros, exist only during the current SAS session. To save frequently
used macros between sessions, you can use either the autocall macro facility or the
stored compiled macro facility.

The autocall macro facility stores the source for SAS macros in a collection of
external files called an autocall library. The autocall facility is useful when you want to
create a pool of easily maintained macros in a location that can be accessed by different
applications and users. Autocall libraries can be concatenated together. The primary
disadvantage of the autocall facility is that the first time that an autocall macro is
called in a session, the macro processor compiles it. This compilation is overhead that
you can avoid by using the stored compiled macro facility.

The stored compiled macro facility stores compiled macros in a SAS catalog in a SAS
data library that you specify. By using stored compiled macros, you might save macro
compilation time in your production-level jobs. However, because these stored macros
are compiled, you must save and maintain the source for the macro definitions in a
different location.

The autocall facility and the stored compiled macro facility each offer advantages.
Some of the factors that determine how you choose to save a macro definition are how
often you use a macro, how often you change it, how many users need to execute it, and
how many compiled macro statements it has. If you are developing new programs,
consider creating macros and compiling them during your current session. If you are
running production-level jobs using name-style macros, consider using stored compiled
macros. If you are allowing a group of users to share macros, consider using the
autocall facility.

106

Saving Macros in an Autocall Library A Chapter 9

Note: For greater efficiency, store only name-style macros if you use the stored
compiled macro facility. Storing statement-style and command-style macros is less
efficient. A

It is good practice, when you are programming stored compiled macros or autocall
macros, to use the #LOCAL statement to define macro variables that will be used only
inside that macro. Otherwise, values of macro variables defined outside of the current
macro might be altered. See the discussion of macro variable scopes in Chapter 5,
“Scopes of Macro Variables,” on page 41.

In general, macro and variable names in the SAS macro facility are case insensitive
and are internally changed to upper case. The values are case sensitive in the SAS
macro facility and are not changed.

When calling an autocall macro or a stored compiled macro, the macro name is
changed to upper case and passed to the catalog routines to open a member of that
name. The catalog routines are host dependent and use the default casing for the
particular host when searching for a member. Macro catalog entries should only be
made using the default casing for the host in question. Here are the host defaults:

0 UNIX default is lower case.
0 MVS default is uppercase.
0 Windows default is lowercase.

Saving Macros in an Autocall Library

Generally, an autocall library is a directory containing individual files, each of which
contains one macro definition. In SAS 6.11 and later, an autocall library can also be a
SAS catalog (see the following section for more information about using SAS catalogs as
autocall libraries.)

Operating Environment Information: Autocall Libraries on Different Hosts The term
directory refers to an aggregate storage location that contains files (or members)
managed by the host operating system. Different host operating systems identify an
aggregate storage location with different names, such as a directory, a subdirectory, a
maclib, a text library, or a partitioned data set. For more information, see the SAS
Companion for your operating system. 2

Using Directories as Autocall Libraries

To use a directory as a SAS autocall library, do the following:

1 To create library members, store the source code for each macro in a separate file
in a directory. The name of the file must be the same as the macro name. For
example, the statements defining a macro you would call by submitting %SPLIT
must be in a file named SPLIT.

Operating Environment Information: Autocall Library Member Names On
operating systems that allow filenames with extensions, you must name autocall
macro library members with a special extension, usually .sas. Look at the
autocall macros on your system provided by SAS to determine whether names of
files containing macros must have a special extension at your site.

On MVS operating systems, you must assign the macro name as the name of
the PDS member. 2

2 Set the SASAUTOS system option to specify the directory as an autocall library.
On most hosts, the reserved fileref SASAUTOS is assigned at invocation time to
the autocall library supplied by SAS or another one designated by your site. If you

Storing and Reusing Macros /A Calling an Autocall Macro 107

are specifying one or more autocall libraries, remember to concatenate the autocall
library supplied by SAS with your autocall libraries so that these macros will also
be available. For details, refer to your host documentation and SASAUTOS in
Chapter 13, “Macro Language Dictionary,” on page 163.

When storing files in an autocall library, remember the following:

0 Although SAS does not restrict the type of material you place in an autocall
library, you should store only autocall library files in it to avoid confusion and for
ease of maintenance.

0 Although SAS lets you include more than one macro definition, as well as open
code, in an autocall library member, you should generally keep only one macro in
any autocall library member. If you need to keep several macros in the same
autocall library member, keep related macros together.

Using SAS Catalogs as Autocall Libraries

In SAS 6.11 and later, you can use the CATALOG access method to store autocall
macros as SOURCE entries in SAS catalogs. To create an autocall library using a SAS
catalog, follow these steps:

1 Use a LIBNAME statement to assign a libref to the SAS library.

2 Use a FILENAME statement with the CATALOG argument to assign a fileref to
the catalog that contains the autocall macros. For example, the following code
creates a fileref, MYMACROS, that points to a catalog named
MYMACS.MYAUTOS:

libname mymacs ‘SAS-data-library’;

filename mymacros catalog ’‘mymacs.myautos’;

3 Store the source code for each macro in a SOURCE entry in a SAS catalog.
(SOURCE is the entry type.) The name of the SOURCE entry must be the same
as the macro name.

4 Set the SASAUTOS system option to specify the fileref as an autocall library. For
more information, see SASAUTOS in Chapter 13, “Macro Language Dictionary,” on
page 163.

Calling an Autocall Macro

To call an autocall macro, the system options MAUTOSOURCE must be set and
SASAUTOS must be assigned. MAUTOSOURCE enables the autocall facility, and
SASAUTOS specifies the autocall libraries. For more information on these options, see
MAUTOSOURCE and SASAUTOS in Chapter 13, “Macro Language Dictionary,” on
page 163.

Once you have set the required options, calling an autocall macro is like calling a
macro that you have created in your current session. However, it is important that you
understand how the macro processor locates the called macro. When you call a macro,
the macro processor searches first for a session compiled macro definition. Next, the
macro processor searches for a permanently stored compiled macro. If compiled stored
macros are enabled with the MSTORED option, the macro processor opens the macro
catalog in the library specified in the SASMSTORE option. If the macro processor does
not find a compiled macro, and if MAUTOSOURCE is set, the macro processor opens
libraries specified by the SASAUTOS option in the order in which they are specified in

108 Saving Macros Using the Stored Compiled Macro Facility A Chapter 9

the option. It then searches each library for a member with the same name as the
macro you invoked. When SAS finds a library member with that name, the macro
processor does the following:
1 compiles all of the source statements in that member, including any and all macro
definitions, and stores the result in the session catalog.
2 executes any open code (macro statements or SAS source statements not within
any macro definition) in that member.

3 executes the macro within it with the name you invoked.

Note: If an autocall library member contains more than one macro, the macro
processor compiles all of the macros but executes only the macro with the name you
invoked. A

Any open code statements in the same autocall library member as a macro execute
only the first time you invoke the macro. When you invoke the macro later in the same
session, the compiled macro is executed, which contains only the compiled macro
definition and not the other code the autocall macro source file might have contained.

It is not advisable to change SASAUTOS during a SAS session. If you change the
SASAUTOS= specification in an ongoing SAS session, SAS will store the new
specification only until you invoke an uncompiled autocall macro and then will close all
opened libraries and open all the newly specified libraries that it can open.

For information about debugging autocall macros, see Chapter 10, “Macro Facility
Error Messages and Debugging,” on page 111.

Saving Macros Using the Stored Compiled Macro Facility

The stored compiled macro facility compiles and saves compiled macros in a
permanent catalog in a library that you specify. This compilation occurs only once. If
the stored compiled macro is called in